高等数学学习笔记 ☞ 无穷小比较与等价无穷小替换

1.  无穷小比较


1. 本质:就是函数的极限趋于0时的速度,谁快谁慢的问题。

2. 定义:若\alpha ,\beta是在同一自变量的变化过程中的无穷小,且\alpha \neq 0,则:

①:若\lim_{}\frac{\beta }{\alpha }=0,则称\beta是比\alpha的高阶无穷小,记作:\beta =o(\alpha )

②:若\lim_{}\frac{\beta }{\alpha }=\infty,则称\beta是比\alpha的低阶无穷小。

③:若\lim_{}\frac{\beta }{\alpha^{k} }=c(c\neq 0,c\neq \infty ,k>0),则称\beta是比\alphak阶无穷小。

④:若\lim_{}\frac{\beta }{\alpha }=c(c\neq 0,c\neq \infty ),则称\beta\alpha是同阶无穷小。

⑤:若\lim_{}\frac{\beta }{\alpha }=1,则称\beta\alpha是等价无穷小,记作:\alpha \sim \beta

备注:

①:进行无穷小比较时,必须指明自变量x的变化过程。

②:当x\rightarrow 0时,\sqrt[n]{1+x}-1\sim \frac{1}{n}x

3. 定理:\beta\alpha是等价无穷小 \Leftrightarrow \beta = \alpha +o(\alpha )

证明:

①:\Rightarrow \alpha \sim \beta ,\lim_{}\frac{\beta -\alpha }{\alpha }=\lim_{}(\frac{\beta }{\alpha }-1)=0

②:\Leftarrow \beta =\alpha +o(\alpha ),\lim_{}\frac{\beta }{\alpha }=\lim_{}\frac{\alpha+o(\alpha) }{\alpha }=\lim_{}(1+\frac{o(\alpha) }{\alpha }) = 1

备注:当o(\alpha )单独拿出来时,o(\alpha )表示比\alpha的高阶无穷小的无穷小,即o(\alpha )\alpha趋近于0的速度快。


2.  常用的等价无穷小


  当x\rightarrow 0时,以下的等价无穷小是成立的。

(1)sinx\sim x                          tanx\sim x                          arcsinx\sim x                          arctanx\sim x

(2)1-cosx\sim \frac{1}{2}x^{2}              cosx-1\sim- \frac{1}{2}x^{2}

(3)\sqrt[]{1+x}-1\sim \frac{1}{2}x          1-\sqrt[]{1+x}\sim- \frac{1}{2}x

(4)\sqrt[3]{1+x}-1\sim \frac{1}{3}x          1-\sqrt[3]{1+x}\sim- \frac{1}{3}x

(5)ln(1+x)\sim x                e^{x}-1\sim x                        1-e^{x}\sim -x

(6)a^{x}-1\sim xlna               1-a^{x}\sim -xlna    (a > 0且a ≠ 1)

备注:上述的x均可以进行整体替换。


3.  等价无穷小替换


  定理:已知\alpha \sim \widetilde{\alpha }\beta \sim \widetilde{\beta },若\lim_{}\frac{\widetilde{\beta }}{\widetilde{\alpha }}的极限存在,则又\lim{\frac{\beta }{\alpha }}=\lim_{}\frac{\widetilde{\beta }}{\widetilde{\alpha }}

备注:对于等价无穷小替换定理:

①:使用等价无穷小的部分,在自变量x的变化过程中,要确保最终的极限值为零。

②:分子和分母可以只替换分子或分母。

③:分子或者分母中的因式项可以单独使用等价无穷小的替换。

④:分子或者分母中的加减项一般不使用等价无穷小的替换,需要先对其处理。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值