线性代数学习笔记之特征值与特征向量

1.  特征值与特征向量的概念


(1)特征值与特征向量定义:

图形表示:

     文字表示:设矩阵A为n方阵\lambda一个数\alphan非零列向量,若存在A\alpha =\lambda \alpha

                       则称\lambda为矩阵A的特征值,\alpha为矩阵A的对应于特征值\lambda的特征向量。

备注:

①:矩阵A必须是方阵。\Leftarrow 从矩阵乘法、矩阵相等和A\alpha =\lambda \alpha的角度来衡量。

②:特征值\lambda是一个数,可以为0。\Leftarrow\lambda \alpha=0的角度来衡量。

③:特征向量\alpha必须是非零列向量。\Leftarrown阶方阵、矩阵乘法和规定(非零)的角度来衡量。

(2)特征值与特征向量关系:

    1)若\alpha是矩阵A的对应于特征值\lambda的特征向量,则k\alpha(k ≠ 0)也是矩阵A的对应于特征值\lambda的特征向量。

         即:若能找到矩阵A的对应于特征值\lambda的一个特征向量,则就能找到矩阵A的对应于特征值\lambda的无穷多个特征向量。

    2)对于给定的矩阵A,若\alpha_{1}\alpha_{2}都是矩阵A的对应于特征值\lambda的特征向量,则非零线性组合k_{1}\alpha _{1} + k_{2}\alpha _{2} ≠ 0

         也是矩阵A的对应于特征值\lambda的特征向量。

    3)对于给定的矩阵A,特征向量\alpha只能是属于其中一个特征值的。

         即:对于给定的矩阵A,特征向量\alpha不能属于不同特征值的,即具备正规父子关系


2.  特征值与特征向量的求法


求解分析:

①:想要求解矩阵A的特征值与特征向量,那就从定义入手。\Leftarrow 目前的学习深度只有定义与特征值和特征向量相关。

②:由A\alpha =\lambda \alpha可得:\lambda \alpha-A\alpha =0,即(\lambdaE - A)\alpha = 0。其中,特征值\lambda与特征向量\alpha就是我们要求解的目标。

③:想要求解特征向量\alpha,那么就把\alpha看成一个未知量x,则(\lambdaE - A)\alpha = 0就转化为(\lambdaE - A)x = 0。即想要求解特征向量\alpha

       就转化成求齐次线性方程组(\lambdaE - A)x = 0的解的问题了。其中,因特征向量\alpha是列向量,所以未知量x也是列向量。

④:因为特征向量\alpha是非零列向量,所以求(\lambdaE - A)x = 0的解,就是求齐次线性方程组(\lambdaE- A)x = 0的非零解(基础解系的解向量)

       其中,若已知特征值\lambda的值,即可解得x\Rightarrow 特征向量。

⑤:因为齐次线性方程组(\lambdaE - A)x = 0是有非零解的,所以|\lambdaE - A| = 0。\Rightarrow 特征值。

备注:

①:若矩阵A的特征值有重根或多重根,则需要全部表示出来,即\lambda _{1}=\lambda _{2}=\lambda _{3}=...

②:若齐次线性方程组(\lambdaE - A)x = 0的基础解系只含有一个解向量,则通解里的常数c要注明:c为非零常数。

③:若齐次线性方程组(\lambdaE - A)x = 0的基础解系含有多个解向量,则通解里的常数c_{1},c_{2},...c_{s}要注明:c_{1},c_{2},...c_{s}不全为零。

④:矩阵A的不同特征值对应的特征向量的通解不能够用同一个常数。

小贴士:

①:特征方程与特征根:已知矩阵A,|\lambdaE - A| = 0称为矩阵A的特征方程;\lambda称为特征方程的特征根。

②:特征多项式:特征方程|\lambdaE - A| = 0的完全展开式。


3.  特征值与特征向量的性质


(1)n阶矩阵A在复数域内必有n个特征值。

(2)n阶矩阵A与其转置矩阵A^{T}有相同的特征多项式,进而有相同的特征值,但特征向量一般不相同。

  证明思路:\lambdaE - A^{T} = (\lambda E)^{T}-A^{T} (\lambda E-A)^{T}

(3)设n阶矩阵A的n个特征值为\lambda _{1}\lambda _{2},...\lambda _{n},则有以下关系式:

   ①:\lambda _{1} + \lambda _{2} + ... + \lambda _{n} = a_{11} + a_{22} + ... + a_{nn}

   ②:\lambda _{1} * \lambda _{2} *... * \lambda _{n} = |A|。

备注:矩阵A的主对角线元素的和,称为矩阵A的迹,记作tr(A)

(4)n阶矩阵A可逆 \Leftrightarrow 矩阵A的所有特征值都不等于0。

         n阶矩阵A不可逆 \Leftrightarrow 矩阵A的特征值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值