1. 特征值与特征向量的概念
(1)特征值与特征向量定义:
图形表示:
![]()
文字表示:设矩阵A为阶方阵,
为一个数,
为
维非零列向量,若存在
,
则称为矩阵A的特征值,
为矩阵A的对应于特征值
的特征向量。
备注:
①:矩阵A必须是方阵。
从矩阵乘法、矩阵相等和
的角度来衡量。
②:特征值
是一个数,可以为0。
从
的角度来衡量。
③:特征向量
必须是非零列向量。
从
阶方阵、矩阵乘法和规定(非零)的角度来衡量。
(2)特征值与特征向量关系:
1)若是矩阵A的对应于特征值
的特征向量,则
(
≠ 0)也是矩阵A的对应于特征值
的特征向量。
即:若能找到矩阵A的对应于特征值的一个特征向量,则就能找到矩阵A的对应于特征值
的无穷多个特征向量。
2)对于给定的矩阵A,若,
都是矩阵A的对应于特征值
的特征向量,则非零线性组合
+
≠ 0
也是矩阵A的对应于特征值的特征向量。
3)对于给定的矩阵A,特征向量只能是属于其中一个特征值的。
即:对于给定的矩阵A,特征向量不能属于不同特征值的,即具备正规父子关系。
2. 特征值与特征向量的求法
求解分析:
①:想要求解矩阵A的特征值与特征向量,那就从定义入手。 目前的学习深度只有定义与特征值和特征向量相关。
②:由可得:
,即(
-
)
=
。其中,特征值
与特征向量
就是我们要求解的目标。
③:想要求解特征向量,那么就把
看成一个未知量
,则(
-
)
=
就转化为(
-
)
=
。即想要求解特征向量
,
就转化成求齐次线性方程组( -
)
=
的解的问题了。其中,因特征向量
是列向量,所以未知量
也是列向量。
④:因为特征向量是非零列向量,所以求(
-
)
=
的解,就是求齐次线性方程组(
-
)
=
的非零解(基础解系的解向量)。
其中,若已知特征值的值,即可解得
。
特征向量。
⑤:因为齐次线性方程组( -
)
=
是有非零解的,所以|
E - A| = 0。
特征值。
备注:
①:若矩阵A的特征值有重根或多重根,则需要全部表示出来,即
。
②:若齐次线性方程组(
-
)
=
的基础解系只含有一个解向量,则通解里的常数
要注明:
为非零常数。
③:若齐次线性方程组(
-
)
=
的基础解系含有多个解向量,则通解里的常数
,
,...
要注明:
,
,...
不全为零。
④:矩阵A的不同特征值对应的特征向量的通解不能够用同一个常数。
小贴士:
①:特征方程与特征根:已知矩阵A,|
E - A| = 0称为矩阵A的特征方程;
称为特征方程的特征根。
②:特征多项式:特征方程|
E - A| = 0的完全展开式。
3. 特征值与特征向量的性质
(1)阶矩阵A在复数域内必有
个特征值。
(2)阶矩阵A与其转置矩阵
有相同的特征多项式,进而有相同的特征值,但特征向量一般不相同。
证明思路:
-
=
=
。
(3)设阶矩阵A的
个特征值为
,
,...
,则有以下关系式:
①: +
+ ... +
=
+
+ ... +
。
②: *
*... *
= |A|。
备注:矩阵A的主对角线元素的和,称为矩阵A的迹,记作tr(A)。
(4)阶矩阵A可逆
矩阵A的所有特征值都不等于0。
阶矩阵A不可逆
矩阵A的特征值