Random Vectors and the Variance-Covariance Matrix

本文介绍了随机向量及其方差协方差矩阵的概念。定义了随机向量的期望,并展示了期望的线性性质。接着,定义了方差协方差矩阵,并通过几个命题展示了其计算公式和对称性质。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Random Vectors and the Variance-Covariance Matrix.pdf
多维变量概率论
Definition 1. 随机向量 x = ( x 1 , x 2 , . . . , x p ) T \mathbf x = (x_1,x_2,...,x_p)^T x=(x1,x2,...,xp)T . 为了方便起见,将其定义为列向量或者将列矩阵 n × 1 n\times 1 n×1.

Expectation

Definition 2. The expectation E x E\mathbf x Ex of a random vector x = [ x 1 , x 2 , . . . , x p ] T \mathbf x = [x_1, x_2,...,x_p]^T x=[x1,x2,...,xp]T is given by
E x = [ E x 1 E x 2 . . . E x p ] . E\mathbf x = \begin{bmatrix} Ex_1 \\ Ex_2 \\ ...\\ Ex_p \end{bmatrix}. Ex=Ex1Ex2...Exp

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值