Random Vectors and the Variance-Covariance Matrix

Random Vectors and the Variance-Covariance Matrix.pdf
多维变量概率论
Definition 1. 随机向量 x = ( x 1 , x 2 , . . . , x p ) T \mathbf x = (x_1,x_2,...,x_p)^T x=(x1,x2,...,xp)T . 为了方便起见,将其定义为列向量或者将列矩阵 n × 1 n\times 1 n×1.

Expectation

Definition 2. The expectation E x E\mathbf x Ex of a random vector x = [ x 1 , x 2 , . . . , x p ] T \mathbf x = [x_1, x_2,...,x_p]^T x=[x1,x2,...,xp]T is given by
E x = [ E x 1 E x 2 . . . E x p ] . E\mathbf x = \begin{bmatrix} Ex_1 \\ Ex_2 \\ ...\\ Ex_p \end{bmatrix}. Ex=Ex1Ex2...Exp

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,我可以帮您回答这个问题。首先,您需要生成符合要求的三维高斯分布的数据。可以使用以下代码生成: ``` library(mvtnorm) set.seed(123) n <- 100 mu <- rep(0, 3) sigma <- diag(3) sigma[1,1] <- 100 # 第一个变量方差较大 data <- rmvnorm(n, mean = mu, sigma = sigma) ``` 接下来,我们需要分别使用协方差矩阵和相关系数矩阵进行主成分分析。可以使用以下代码实现: ``` # 使用协方差矩阵进行主成分分析 cov_mat <- cov(data) eig_cov <- eigen(cov_mat) screeplot(eig_cov$values, type = "b") pc_scores_cov <- as.matrix(data) %*% eig_cov$vectors pairs(pc_scores_cov) # 使用相关系数矩阵进行主成分分析 cor_mat <- cor(data) eig_cor <- eigen(cor_mat) screeplot(eig_cor$values, type = "b") pc_scores_cor <- as.matrix(data) %*% eig_cor$vectors pairs(pc_scores_cor) ``` 以上代码中,`eigen()` 函数用于计算特征值和特征向量,`screeplot()` 函数用于绘制 scree plot,`pairs()` 函数用于绘制主成分得分的矩阵图。 最后,我们可以比较使用协方差矩阵和相关系数矩阵进行主成分分析的结果。根据 scree plot,我们可以发现使用协方差矩阵的前两个主成分的方差解释比例较大,而使用相关系数矩阵的前三个主成分的方差解释比例较大。此外,根据主成分得分的矩阵图,我们可以发现使用协方差矩阵的第一和第二个主成分之间存在一定的关联,而使用相关系数矩阵时不存在这种关联。这是因为相关系数矩阵考虑了变量之间的线性关系,因此主成分之间更加独立。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值