comfyUI,checkpoin,lora,clip,vae多合一结点分享,人物一件换装工作流

这个nodes是我从油管大神哪里下载的

地址:https://www.youtube.com/watch?v=Z8oAfmtqV2c&t=387s

结点如下图所示:

结点将大模型,lora,vae,正反向提示词等等等都做了整合。

你也可以通过设置将参数转换成输入或者输出,这个节点还是挺方便的。

这里是我自己做的工作流,分别是图片载入,SAM自动进行图片根据提示词生成蒙版,然后是三个controlnet网络控制图片,随后是图片放大,工作流我会放在文档后面,大家下载之后,可以通过管理器进行安装,包括这个节点的安装。

工作流链接:链接:https://pan.baidu.com/s/1eKP2r8uU_Tb5L41wr9CIQg?pwd=g3cz 
提取码:g3cz 

### Flink 常见问题及解决方法 #### 资源管理与性能调优 当遇到Flink作业运行缓慢或资源消耗过高的情况时,可以采取种措施进行优化。使用Flink自带的监控工具,比如Web UI,能够实时查看作业的各项指标,从而判断是否存在瓶颈[^4]。 对于负载不均衡的情况,调整`parallelism.default`参数是一个有效的手段。这允许开发者根据实际需求动态改变任务并行执行的数量,进而提高整体效率。 另外,在设计数据流处理逻辑时应尽可能简化流程,去除冗余操作,并考虑利用缓存技术来降低重复计算带来的开销。 ```java // 设置全局默认并行度 Configuration config = new Configuration(); config.setInteger("parallelism.default", 8); ``` #### 容错机制中的检查点配置 为了保障系统的高可用性和稳定性,Flink引入了检查点(Checkpoint)功能用于实现容错。该特性使得应用能够在遭遇失败之后快速回滚至最近一次成功的状态继续工作而不会丢失任何已处理的数据[^2]。 合理设置checkpoint的相关属性如间隔时间(`checkpointing.interval`)、超时时长(`state.backend.checkpoints.num-retained`)等有助于提升恢复速度以及减少存储空间占用量。 ```properties # 配置文件flink-conf.yaml中定义checkpoin相关选项 execution.checkpointing.interval: 1 min state.backend.checkpoints.num-retained: 5 ``` #### 数据流转环节可能出现的问题及其对策 如果发现某些算子之间存在阻塞现象,则可能是由于反压(Backpressure)引起;此时应当深入分析上下游之间的依赖关系找出根源所在,并尝试增加缓冲区大小或是调节各阶段间的吞吐速率以缓解压力[^1]。 针对窗口(Window)函数导致的任务延迟完成事件,需确认输入边界条件是否满足预期设定的要求,同时也要注意评估聚合运算本身的复杂程度是否会拖慢进度条推进的速度。 #### 表结构变更支持 关于如何让Flink无缝适应Schema Registry上的模式变化,可以通过编写自定义序列化器Deserializer配合AvroFormat解析来自Kafka的消息体内容,再借助于Confluent Schema Registry API获取最新版本schema信息自动映射到目标字段上去[^3]。 ```scala val deserializer = new KafkaAvroDeserializer() deserializer.configure(Map( "schema.registry.url" -> "http://localhost:8081" ).asJava, false) val value = deserializer.deserialize(topicName, messageValue) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值