【ComfyUI插件】ComfyUI核心节点(四)

本文详细介绍了ComfyUI中的几个核心节点,包括Latent Composite、LatentCompositeMasked、Upscale Latent、Set Latent Noise Mask和Load LoRA节点,讲解了它们的功能、输入参数和输出效果,帮助用户理解并掌握这些节点在图像处理中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

知识星球已更新150+节点,每个节点详解讲解并且给出示例工作流,现阶段门票只需50元,欢迎大家加入很向我提问!!!!!!

知识星球ID:71297236

前言:

ComfyUI的学习是一场持久战,当你掌握ComfyUI的安装和运行之后,会出现琳琅满目的节点,当各种各样的工作流映入眼帘,往往难以接受纷繁复杂的节点种类,本篇文章将以通俗易懂的语言,对ComfyUI的各种核心节点进行系统的梳理和参数的详解祝愿大家在学习的过程中掌握自我思考的能力,并且切实的掌握和理解各个节点的用法与功能。


目录:

一、Latent Composite节点

二、LatentCompositeMasked节点

三、Upscale Latent节点

四、Set Latent Noise Mask节点

五、Load LoRA节点

LoRA示例工作流


一、Latent Composite节点

节点功能:该节点类似于图层叠加结点,区别在于这个在潜空间对图像进行叠加。

输入:

samples_to       ->     接收叠加的潜空间图层之一     **该参数传入的图片为图层底层**
samples_from     ->     接收叠加的潜空间图层之一     **该参数传入的图片为图层上层**

注意:我们传入的是latent参数,传入后预览需要使用VAE解码,而且保证前后使用的VAE相同

参数:

x  ->     上层图层叠加位置的的x坐标          **ComfyUI中坐标原点为左上角**
y  ->     上层图层叠加位置的的y坐标          **ComfyUI中坐标原点为左上角**
feather         ->          表示边缘的羽化程度

注意:下图示例设置feather为216可以看到上层图层的边缘有羽化,设置y坐标为24,粘贴位置向下偏移。


输出:

LATENT      ->      输出图层叠加后的潜空间图像         **和前面latent使用同一VAE解码**

二、LatentCompositeMasked节点

节点功能:该节点将latent图像进行叠加,但是上层图像可以通过蒙版进行选择性粘贴。

输入:

destination  ->     底层潜空间图像
source       ->     上层潜空间图像
mask         ->     使用mask对上层潜空间图像进行分割

注意:如下图所示,在source图像中给出蒙版信息,传入LatentCompositeMasked节点,用来限制粘贴区域,后续经过VAE解码得到图像,仅粘贴了蒙版区域。


参数:

x           ->     表示粘贴区域的x坐标              **ComfyUI坐标原点位于左上角**
y           ->     表示粘贴区域的y坐标              **ComfyUI坐标原点位于左上角**
resize_source             ->             表示是否对蒙版区域进行分辨率调整

输出:

LATENT      ->     输出图层叠加后的潜空间图像         **和前面latent使用同一VAE解码**

三、Upscale Latent节点

节点功能:该节点对潜空间图像进行分辨率调整,仅使用数学方式进行像素填充。

输入:

samples          ->       传入的原始潜空间图像

参数:

upscale_method      ->        表示像素填充的方法
width               ->        调整后潜空间图像的宽度
height              ->        调整后潜空间图像的高度
crop                ->        表示是否对图像进行裁剪

注意:潜空间图像的方法并不会很完美的融合图像,通过VAE解码后会出现毁坏的情况,!!!正确的做法是使用KSampler采样器进行二次采样,从而使得图像更加的美观!!!


输出:

LATENT      ->     输出尺寸调整之后的潜空间图像

四、Set Latent Noise Mask节点

节点功能:该节点对潜空间图像增加蒙版,从而控制扩散区域

输入:

samples    ->     接收传入的潜空间图像
mask       ->     接收传入的蒙版信息

注意:因为该设置传入的蒙版并没有羽化的操作,所以会导致蒙版区域的扩散和原始图的融合度很低,不建议使用。


输出:

LATENT     ->    输出带有蒙版信息的潜空间图像

五、Load LoRA节点

节点功能:该节点加载Lora模型,并且设置lora模型的权重。

输入:

model       ->     加载扩散使用的大模型    **lora的训练会使用一个大模型底模,对应的底模效果最好**    
clip        ->     加载使用的CLIP模型   

参数:

lora_name     ->    需要使用到的lora模型   **配置好路径文件,模型可以自行选择**
strength_model     ->       修改大模型的扩散强度      **可以设置为负值**
strength_clip      ->       修改CLIP模型的强度        **可以设置为负值**

输出:

MODEL         ->    修正后的大模型作为输出
CLIP          ->    修正后的CLIP模型作为输出

注意:如图所示,使用一个“水晶”类型的lora进行模型的扩散,最终得到的图像就会受到lora的影响。

lora训练时常会使用一个统一的标签,所以在提示词输入框,需要输入lora的引导词作为指导。

lora示例工作流:

学习完以上节点,您就可以搭建“lora示例”工作流了

这里使用SDXL的大模型,使用“流体”对应的lora,设置潜空间图片为XL适用的1024*1024进行扩散,提示词中加入Lora模型对应的引导词,从而获得最终图像:


孜孜不倦,方能登峰造极。坚持不懈,乃是成功关键。


### ComfyUI 节点功能与使用教程 #### 一、理解ComfyUI节点的概念 ComfyUI采用基于节点的架构,其中UI元素被表示为相互连接的节点。每个节点封装了特定的功能或行为,这使得UI开发不仅模块化而且高度可扩展[^2]。 #### 二、常见类型的节点及其用途 1. **输入/输出节点** 这些节点用于向工作流引入数据或将处理后的结果导出。例如,“Image Input”允许用户加载图片文件作为后续操作的对象;而“Save Image”则负责保存最终生成的作品到本地磁盘上。 2. **图像处理节点** 此类别下的组件专注于对视觉素材执行各种变换和调整动作。“Resize Crop”能够改变画布尺寸大小而不失真;还有专门针对色彩校正的任务如“Color Balance”。 3. **合成与混合节点** 当涉及到多层叠加效果时就轮到了这类工具大显身手。“Alpha Composite”按照透明度比例融合两张或多张图层;另外也有实现渐变过渡等功能的选择。 4. **特效应用节点** 想要给作品增添独特风格?不妨试试看这里的选项吧!无论是模拟自然现象还是创造抽象艺术感都轻而易举。“Noise Generator”可以制造随机噪波纹理来增加细节层次;“Blur Filter”提供多种模糊模式供挑选。 5. **控制流程节点** 对于复杂的工作流而言不可或缺的一部分就是逻辑判断机制。“If Condition”依据设定条件决定分支走向;通过循环结构反复迭代相同的操作直到满足终止标准也是可行方案之一。 6. **自定义脚本节点** 如果内置资源无法完全覆盖需求,则可以通过编写Python代码的方式来自行设计新的能力。“Script Executor”接收外部导入.py文件并运行其中定义的方法函数,在此基础上几乎没有什么是不可能完成的任务了[^3]。 ```python def custom_node_example(input_image, parameter_value): """ A simple example of a Python function that could be used within a custom node. Args: input_image (PIL.Image): The image to process. parameter_value (float): An adjustable value affecting the processing. Returns: PIL.Image: Processed output image. """ from PIL import ImageEnhance enhancer = ImageEnhance.Brightness(input_image) enhanced_output = enhancer.enhance(parameter_value) return enhanced_output ``` 7. **模型调用节点** 特别值得一提的是,ComfyUI还支持集成机器学习算法库中的预训练模型来进行高级别的自动化创作活动。“Stable Diffusion Model Call”便是这样一个接口实例,它能根据提示词自动绘制出相应的图案[^1]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值