简单组合学(4) Polya计数定理(2)

Definition  Definition  GSnk G ⩽ S n 的 k − 不动置换类 Zk Z k 称作使 ak a k 不改变位置的置换集合,它是群 G G 的子群.

例如群G={e,(1 2),(3 4),(1 2)(3 4)} Z1={e,(3 4)} Z 1 = { e , ( 3   4 ) } .
证明:
Zk Z k k k − 不动置换类,因此 (k) ( k ) 是任意 Zk Z k 元素的因子,不妨令它成为 (n) ( n ) ,易知 (n)(n)=(n) ( n ) ( n ) = ( n ) ,于是剩下的因子构成的置换集合 G{n} G { n } 会有 G{n}Sn1(n>1) G { n } ⩽ S n − 1 ( n > 1 ) .

Definition  Definition  下标集合 Ek={a1=k,a2,a3,,al} E k = { a 1 = k , a 2 , a 3 , … , a l } 称为 k k − 等价类,若 aiEk,pi,s.t.(a1 ai)|pi ∀ a i ∈ E k , ∃ p i , s . t . ( a 1   a i ) | p i ,这里 | | 为置换的整除关系若唯一分解pi=(ai aj)中包含 (a1 ai) ( a 1   a i ) ,称 pi p i (a1 ai) ( a 1   a i ) 整除.

Theorem  Theorem  G G 是置换群,则k[1,n],|G|=|Ek||Zk|.

证明:
Ek={a1=k,a2,,al} E k = { a 1 = k , a 2 , … , a l } .
易知 aiEk,piG,s.t.pi(k)=ai. ∀ a i ∈ E k , ∃ p i ∈ G , s . t . p i ( k ) = a i .
那么 pZk,(k ai)|ppi,(k aj)/|ppi ∀ p ∈ Z k , ( k   a i ) | p p i , ( k   a j ) ⧸ | p p i ,这就说明:

ZkpiZkpj=(1) (1) Z k p i ∩ Z k p j = ∅

下面证明 G=i=1lZkpi G = ∑ i = 1 l Z k p i .
pipj=pG ∀ p i p j = p ∈ G ,这就证明了 i=1lZkpiG ⋃ i = 1 l Z k p i ⊆ G .
pG ∀ p ∈ G ,必然有 aiEk,(k ai)|p ∃ a i ∈ E k , ( k   a i ) | p ,于是 pp1iZkpZkpi p p i − 1 ∈ Z k 即 p ∈ Z k p i ,于是 Gi=1lZkpi G ⊆ ⋃ i = 1 l Z k p i .
所以 G=i=1lZkpi G = ⋃ i = 1 l Z k p i .
又由 (1) ( 1 ) 式,就证明了 G=i=1lZkpi G = ∑ i = 1 l Z k p i .两边计算群阶,就证明了定理.

definition  definition  G G 是置换群,说pG含有不动点 δk δ k ,就是说 (k)|p ( k ) | p .记 c1(p)=k=1n[(k)|p] c 1 ( p ) = ∑ k = 1 n [ ( k ) | p ] ,即 c1(p) c 1 ( p ) 是对置换 p p 不动点的计数.

Burnside's Lemma  GSn G ⊆ S n ,那么 G G n元集合的作用下的等价类计数 f(G) f ( G ) 为:

f(G)=1|G|pGc1(p) f ( G ) = 1 | G | ∑ p ∈ G c 1 ( p )

证明:
G G 中所有置换的不动点的总数为X,那么 X=pGc1(p) X = ∑ p ∈ G c 1 ( p ) .
而若 pZk p ∈ Z k ,则 (k)|p ( k ) | p ,这就是在说 |Zk|=pG[(k)|p] | Z k | = ∑ p ∈ G [ ( k ) | p ] ,所以 X=k=1npG[(k)|p]=k=1n|Zk| X = ∑ k = 1 n ∑ p ∈ G [ ( k ) | p ] = ∑ k = 1 n | Z k | .
k=1n|Zk|=k=1n|G||Ek|=|G|k=1n1|Ek| ∑ k = 1 n | Z k | = ∑ k = 1 n | G | | E k | = | G | ∑ k = 1 n 1 | E k | .
显然属于 k¯¯¯ k ¯ 等价类的个数有 |Ek¯¯¯| | E k ¯ | 个,所以 k=1n1|Ek|=i=1nk¯¯¯=1f(G)[iEk¯¯¯]1|Ek¯¯¯|=k¯¯¯=1f(G)1=f(G) ∑ k = 1 n 1 | E k | = ∑ i = 1 n ∑ k ¯ = 1 f ( G ) [ i ∈ E k ¯ ] 1 | E k ¯ | = ∑ k ¯ = 1 f ( G ) 1 = f ( G ) .
于是 f(G)=1|G|pGc1(p) f ( G ) = 1 | G | ∑ p ∈ G c 1 ( p ) .

举个例子:
Example  Example  求空间三角形染两种颜色本质不同的方案.

解:
首先列出所有八种方案,从左至右从上至下分别编号为1,2,3,…,8.

  黑      黑      黑      黑
黑  黑  黑  白  白  黑  白  白
  白      白      白      白
黑  黑  黑  白  白  黑  白  白

知道:
记顺时针旋转 60 60 ∘ 的置换为 ρ ρ ,记沿中线翻转 180 180 ∘ 的置换为 π π ,那么 G={e,ρ,ρ2,π,πρ,πρ2}. G = { e , ρ , ρ 2 , π , π ρ , π ρ 2 } .
e=(1)(2)(3)(4)(5)(6)(7)(8),ρ=(1)(2 3 5)(4 7 6)(8),π=(1)(2 3)(4)(5)(6 7)(8), e = ( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 ) , ρ = ( 1 ) ( 2   3   5 ) ( 4   7   6 ) ( 8 ) , π = ( 1 ) ( 2   3 ) ( 4 ) ( 5 ) ( 6   7 ) ( 8 ) ,
ρ2=(1)(2 5 3)(4 6 7)(8),πρ=(1)(2 5)(3)(4 7)(6)(8),πρ2=(1)(2)(3 5)(4 6)(7)(8). ρ 2 = ( 1 ) ( 2   5   3 ) ( 4   6   7 ) ( 8 ) , π ρ = ( 1 ) ( 2   5 ) ( 3 ) ( 4   7 ) ( 6 ) ( 8 ) , π ρ 2 = ( 1 ) ( 2 ) ( 3   5 ) ( 4   6 ) ( 7 ) ( 8 ) .
于是:

f(G)==1|G|(c1(e)+c1(ρ)+c1(π)+c1(πρ)+c1(ρ2)+c1(πρ2))16(8+2+4+4+2+4)=4. f ( G ) = 1 | G | ( c 1 ( e ) + c 1 ( ρ ) + c 1 ( π ) + c 1 ( π ρ ) + c 1 ( ρ 2 ) + c 1 ( π ρ 2 ) ) = 1 6 ( 8 + 2 + 4 + 4 + 2 + 4 ) = 4.

下面列出本质相同的方案:

  黑      黑      黑      白
黑  黑  黑  白  白  白  白  白

确实是这样的.

看完了这些,你或许已经稍微掌握了 Burnside Burnside 引理的内容,但是这个引理当初是怎么来的呢?或者说,如果从群论的观点出发,对于这个引理会有什么新的理解?如果你想了解,可以继续往下看:

Definition GS,Ss,G(s)={gs|gG}. Definition  群 G 是 S 的 置 换 群 , 其 对 集 合 S 上 某 元 素 s 的 作 用 产 生 一 个 新 的 集 合 , 记 作 轨 G ( s ) = { g s | g ∈ G } .

想象一个有限映射 f(s1)=s2 f ( s 1 ) = s 2 ,显然 f f 可以成为一个群,那么这样一个群就是上文的群G.例如 f(s1)=s2,g(s2)=s3 f ( s 1 ) = s 2 , g ( s 2 ) = s 3 ,那么 g(f(s1))=(gf)(s1)=s3 g ( f ( s 1 ) ) = ( g ∘ f ) ( s 1 ) = s 3 ,如果 g,f g , f 是双射,确实 gf g ∘ f 确实能够给出一个新的双射.

Theorem  Theorem  G,S,G(s) G , S 由 上 文 给 出 , 那 么 G ( s ) 确定 S S 的一个等价类.

证明:
1)sS,sG(s).S=sSG(s).
2)若 s1,s2G(s1)G(s2),G(s1)=G(s2). s 1 , s 2 ∈ G ( s 1 ) ∩ G ( s 2 ) , 那 么 G ( s 1 ) = G ( s 2 ) .
因为 s2G(s1)gG,s2=gs1g1G,s1=g1s2 s 2 ∈ G ( s 1 ) ⇒ ∃ g ∈ G , s 2 = g s 1 ⇒ ∃ g − 1 ∈ G , s 1 = g − 1 s 2 .于是,
sG(s1),s=g1s1=g1g1s2=g1s2,sG(s2) ∀ s ∈ G ( s 1 ) , s = g 1 s 1 = g 1 g − 1 s 2 = g 1 ′ s 2 , 于 是 s ∈ G ( s 2 ) .
sG(s2),s=g2s2=g2gs1=g2s1,sG(s1) ∀ s ∈ G ( s 2 ) , s = g 2 s 2 = g 2 g s 1 = g 2 ′ s 1 , 于 是 s ∈ G ( s 1 ) .
从而 G(s1)=G(s2) G ( s 1 ) = G ( s 2 ) .
3)若 s1G(s2),G(s1)G(s2)=. s 1 ∉ G ( s 2 ) , 那 么 G ( s 1 ) ∩ G ( s 2 ) = ∅ .
sG(s1)G(s2) s ∈ G ( s 1 ) ∩ G ( s 2 ) ,那么 s=g1s1=g2s2 s = g 1 s 1 = g 2 s 2 ,于是 s1=g11g2s2 s 1 = g 1 − 1 g 2 s 2 ,这就是说 s1G(s2) s 1 ∈ G ( s 2 ) ,但由已知,这是不可能的,于是 G(s1)G(s2)= G ( s 1 ) ∩ G ( s 2 ) = ∅ .

综上三点 G(s) G ( s ) 划分 S S 的一个等价类,事实上这对应我们之前所描述的Ek.那么 Zk Z k 由什么给出呢?

我们知道如果 g1,g2G,g1sg2s ∀ g 1 , g 2 ∈ G , g 1 s ≠ g 2 s ,那么 G(s)=|G| G ( s ) = | G | .但往往, |G(s)||G| | G ( s ) | ⩽ | G | ,也就是它们不会是严格相等的关系(具体例子,请读者自己尝试举出).
原因就是 g1,g2G,g1s=g2s ∃ g 1 , g 2 ∈ G , g 1 s = g 2 s ,那么这就是在说 gG,g12g1s=gs=s ∃ g ∈ G , g 2 − 1 g 1 s = g s = s .

Definition  Definition  G,S由上文给出,称 Gs G s G G s的稳定子群,如果 Gs={g|gs=s,gG} G s = { g | g s = s , g ∈ G } .

下面证明 GsG G s ⩽ G .

证明:
1)如果 g1,g2Gs g 1 , g 2 ∈ G s ,那么 g1s=g2s=s g 1 s = g 2 s = s ,所以 g1g2s=g1s=s g 1 g 2 s = g 1 s = s ,所以 g1g2Gs g 1 g 2 ∈ G s .
2)如果 gGs g ∈ G s ,那么 gs=s g s = s ,所以 g1s=s g − 1 s = s ,所以 g1Gs g − 1 ∈ G s .
3)显然 es=s e s = s ,所以 eGs e ∈ G s .

Theorem  Theorem  G,S G , S 由 上 文 给 出 sS|G/Gs|=|G(s)| ∀ s ∈ S 那 么 | G / G s | = | G ( s ) | ,即 |G|=|G(s)||Gs| | G | = | G ( s ) | | G s | ,即 Gs G s 的指数为 |G(s)| | G ( s ) | .

证明:
gG g ′ ∈ G ,那么 gGs,s=ggs=gs ∀ g ∈ G s , s ′ = g ′ g s = g ′ s ,所以 (gGs)(s)=g(s) ( g ′ G s ) ( s ) = g ′ ( s ) ,
但是 ggg g ′ g ≠ g ′ ,设 gggGs,s.t.g(s)=s g ′ g ∈ g ′ G s , s . t . g ′ ( s ) = s ′ ,那么我们至多找到 G(s) G ( s ) 个这样的集合.
因为令 s1=g1gs,s2=g2gs,...s|G|=g|G|gs s 1 = g 1 g s , s 2 = g 2 g s , . . . s | G | = g | G | g s ,至多有 G(s) G ( s ) 个不同的 si s i ,各取一个代表,易知 G=i=1|G(s)|giGs G = ⋃ i = 1 | G ( s ) | g i G s ,并且右侧集合两两不相交,所以 |G|=|G(s)||Gs| | G | = | G ( s ) | | G s | .

由上定理,我们不难得到以下结论:
1) Gs G s 就是前文的 Zk Z k .
2)考虑 HG H ⩽ G , H H 同样有对G集合上元素的作用,并且 H(e)=|G| H ( e ) = | G | , H(g)=0,geG H ( g ) = 0 , g ≠ e ∈ G ,这就是在说 |G|=|H(e)||H|=[G:H]|H| | G | = | H ( e ) | | H | = [ G : H ] | H | ,从而我们知道了 Burnside Burnside 引理是 Lagrange Lagrange 定理的推广.

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值