传送门
题目大意:给你一张有向无环图,边权是字母。
对于每一对(s,t),按照如下规则,求当第一个人在s第二个人在t的时候谁有必胜策略。规则是,两人轮流移动,每次移动的边权不能小于上一次移动的边权。不能移动的人输。n<=100, m<=10000。
题解:DAG,考虑dp。两个人博弈论,考虑令f[x][y][c]表示第一个人在x第二个人在y上一次边权是c,当前是第一个人要走,能否赢。g同理,表示第二个人。按照拓扑序转移即可。
#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
#define N 110
#define M 10010
using namespace std;
bool f[N][N][30],g[N][N][30];
struct edges{
int to,pre,wgt;
}e[M];int h[N],etop,cnt,d[N],t[N];
queue<int> q;char ch[5];
inline int add_edge(int u,int v,int w)
{
return e[++etop].to=v,e[etop].wgt=w,e[etop].pre=h[u],h[u]=etop;
}
int main()
{
int n,m;scanf("%d%d",&n,&m);
for(int i=1,u,v;i<=m;i++)
scanf("%d%d%s",&u,&v,ch),
add_edge(u,v,ch[0]-'a'+1),d[v]++;
for(int i=1;i<=n;i++)
if(!d[i]) q.push(i),t[++cnt]=i;
while(!q.empty())
{
int x=q.front();q.pop();
for(int i=h[x],y;i;i=e[i].pre)
if(!(--d[y=e[i].to]))
q.push(y),t[++cnt]=y;
}
for(int i=n;i;i--)
for(int j=n;j;j--)
for(int c=0;c<=26;c++)
{
int x=t[i],y=t[j];f[x][y][c]=g[x][y][c]=false;
for(int k=h[x];k;k=e[k].pre)
if(c<=e[k].wgt) f[x][y][c]|=(!g[e[k].to][y][e[k].wgt]);
for(int k=h[y];k;k=e[k].pre)
if(c<=e[k].wgt) g[x][y][c]|=(!f[x][e[k].to][e[k].wgt]);
}
for(int i=1;i<=n;i++,printf("\n"))
for(int j=1;j<=n;j++)
if(f[i][j][0]) printf("A");
else printf("B");
return 0;
}