题目大意:
给你一张网个图,每个位置是空地、障碍、炸弹、宝藏、起点之一。
规划一条从其点出发不包含炸弹的闭合路线(回路),并可获得最大的利润。
利润定义为路线内部的宝藏收益(可能为负数)之和减去路径长度(可以不走)。注意路线可以自交。
为了确定一个格子是否在这条路线里面,请使用以下算法判断:1.假设该点的坐标为需要判断的点为 p(i,j) ,该点不在路线上。2.从该点往任意方向作一条射线,如果与路线相交奇数次,我们就认为这个格子在这条路线里面,否则这个格子在这条路线外面。
n
,
m
≤
20
,
t
≤
8
,
∣
v
a
l
u
e
∣
≤
200
n,m\le20,t\le8,|value|\le200
n,m≤20,t≤8,∣value∣≤200,其中
t
t
t为宝藏和障碍的数量之和。
题解:
考虑dp(虽然最后不需要),显然你会设dp(x,y,s)表示现在在(x,y),已经收集了恰好s这个集合的宝藏的最短路。发现不能确定s的转移,gg。
然后意识到对于一个宝藏的判定等价于引出一条射线并判定交点个数奇偶,然后钦定所有射线的方向(我是钦定了上偏右60度角),然后状压这个奇偶性,最后bfs一波确定每个状态的值即可。
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<queue>
#include<climits>
#include<cmath>
#include<assert.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define INF (INT_MAX/20-10)
#define inf (INT_MIN/20+10)
#define MXA 23
#define MXS 280
#define N MXA*MXA*MXS
#define M (N*4)
#define db double
#define debug(x) cerr<<#x<<"="<<x
#define sp <<" "
#define ln <<endl
using namespace std;
const db sqrt3=sqrt(3);
struct edges{
int to,pre;
}e[M];int h[N],etop,id[MXA][MXA][MXS],d[N],a[MXA][MXA];queue<int> q;
inline int add_edge(int u,int v) { return e[++etop].to=v,e[etop].pre=h[u],h[u]=etop; }
struct P{
int x,y,val;
P(int _x=0,int _y=0,int _v=0)
{ x=_x,y=_y,val=_v; }
}p[30];int dx[4]={0,1,0,-1},dy[4]={1,0,-1,0};
inline int bfs(int s,int n)
{
while(!q.empty()) q.pop();
for(int i=1;i<=n;i++) d[i]=INF;
d[s]=0,q.push(s);
while(!q.empty())
{
int x=q.front();q.pop();
for(int i=h[x],y;i;i=e[i].pre)
if(d[y=e[i].to]==INF) d[y]=d[x]+1,q.push(y);
}
return 0;
}
struct V{
db x,y;
V(db _x=0,db _y=0) { x=_x,y=_y; }
};
inline db cross(const V &a,const V &b) { return a.x*b.y+a.y*b.x; }
inline int sgn(db x) { return (x<0)?-1:(x>0); }
int main()
{
int n,m,ans=0,sx=0,sy=0;
int nc=0;scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
static char s[MXA];scanf("%s",s+1);
for(int j=1;j<=m;j++)
if(s[j]=='S') sx=i,sy=j,a[i][j]=0;
else if(s[j]=='#') a[i][j]=1;
else if(s[j]=='.') a[i][j]=0;
else if(s[j]=='B') a[i][j]=3;
else p[s[j]-'1']=P(i,j,0),nc=max(nc,s[j]-'0'),a[i][j]=2;
}
for(int i=0;i<nc;i++) scanf("%d",&p[i].val);
rep(i,1,n) rep(j,1,m) if(a[i][j]==3) p[nc++]=P(i,j,inf);
int all=(1<<nc)-1,c=0;
rep(i,1,n) rep(j,1,m) rep(s,0,all) id[i][j][s]=++c;
rep(s,0,all) rep(i,1,n) rep(j,1,m) rep(k,0,3)
{
if(a[i][j]) continue;int x=i+dx[k],y=j+dy[k],t=s;
if(x<=0||x>n||y<=0||y>m||a[x][y]) continue;
rep(q,0,nc-1)
{
int px=p[q].x,py=p[q].y;
V v1(px-i,j-py),v2(px-x,y-py),v3(1,sqrt3);
int s1=sgn(cross(v3,v1)),s2=sgn(cross(v3,v2));
if(s1!=s2&&py<=min(j,y)) t^=(1<<q);
}
add_edge(id[i][j][s],id[x][y][t]);
// printf("(%d,%d,%d) -> (%d,%d,%d)\n",i,j,s,x,y,t);
}
bfs(id[sx][sy][0],c);
for(int s=0,v;s<=all;ans=max(ans,v-d[id[sx][sy][s]]),s++)
for(int i=v=0;i<nc;i++) if((s>>i)&1) v+=p[i].val;
return !printf("%d\n",ans);
}