题目大意:
给你个二分图
G
(
V
=
(
X
,
Y
)
,
E
)
G(V=(X,Y),E)
G(V=(X,Y),E)。
定义
G
m
G^m
Gm是一个
m
+
1
m+1
m+1层图,每相邻两层的诱导子图都和
G
G
G同构。对
G
1
…
G
m
G^1\dots G^m
G1…Gm求最小生成树。
∀
e
∈
E
,
1
≤
w
(
e
)
≤
30
,
n
,
m
≤
1
0
5
,
∣
E
∣
≤
2
×
1
0
5
\forall e\in E,1\le\mathrm{w}(e)\le30,n,m\le10^5,|E|\le2\times10^5
∀e∈E,1≤w(e)≤30,n,m≤105,∣E∣≤2×105。
题解:考虑每条边的贡献,即为使得联通块减少的数量;考虑对每个
i
∈
[
0
,
30
)
i\in[0,30)
i∈[0,30)求只加入边权
≤
i
\le i
≤i的边,还要联通多少联通块,那么边权在
(
i
,
30
]
(i,30]
(i,30]的边贡献次数++,这样边权为
w
w
w的边贡献了
w
w
w次。
问题转化为,加入一些边,有效的连接(使得联通块数量减少)是多少。
这部分参考一下代码就很清楚了,略过。
#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define Rep(i,v) rep(i,0,(int)v.size()-1)
#define lint long long
#define ull unsigned lint
#define db long double
#define pb push_back
#define mp make_pair
#define fir first
#define sec second
#define debug(x) cerr<<#x<<"="<<x
#define sp <<" "
#define ln <<endl
using namespace std;
typedef pair<int,int> pii;
typedef set<int>::iterator sit;
namespace INPUT_SPACE{
const int BS=(1<<24)+5;char Buffer[BS],*HD,*TL;
char gc() { if(HD==TL) TL=(HD=Buffer)+fread(Buffer,1,BS,stdin);return (HD==TL)?EOF:*HD++; }
inline int inn()
{
int x,ch;while((ch=gc())<'0'||ch>'9');
x=ch^'0';while((ch=gc())>='0'&&ch<='9')
x=(x<<1)+(x<<3)+(ch^'0');return x;
}
}using INPUT_SPACE::inn;
namespace OUTPUT_SPACE{
char ss[3000000],tt[30];int ssl,ttl;
inline int print(lint x)
{
if(!x) ss[++ssl]='0';
for(ttl=0;x;x/=10) tt[++ttl]=char(x%10+'0');
for(;ttl;ttl--) ss[++ssl]=tt[ttl];return ss[++ssl]='\n';
}
inline int Flush() { return fwrite(ss+1,sizeof(char),ssl,stdout),ssl=0,0; }
}using OUTPUT_SPACE::print;using OUTPUT_SPACE::Flush;
const int N=100010,M=N,MXW=35;
int fa[N<<1];vector<pii> A,B,es[MXW];lint ans[M],cnt[M];
int findf(int x) { return x==fa[x]?x:fa[x]=findf(fa[x]); }
inline int solve(int n,int m,int w)
{
memset(cnt,0,sizeof(lint)*(m+1));
rep(i,1,n*2) fa[i]=i;
rep(i,1,w) Rep(j,es[i])
{
int x=findf(es[i][j].fir),y=findf(es[i][j].sec);
if(x==y) continue;if(x>y) swap(x,y);fa[x]=y,cnt[1]++;
if(x>n&&y>n) A.pb(mp(x-n,y-n));
}
rep(i,2,m&&A.size())
{
B.clear();
Rep(j,A)
{
int x=findf(A[j].fir),y=findf(A[j].sec);
if(x==y) { cnt[i]--;continue; }
if(x>y) swap(x,y);fa[x]=y;
if(x>n&&y>n) B.pb(mp(x-n,y-n));
}
A.swap(B);
}
rep(i,2,m) cnt[i]+=cnt[i-1];
rep(i,2,m) cnt[i]+=cnt[i-1];
rep(i,1,m) ans[i]+=n*(i+1ll)-cnt[i]-1;
return 0;
}
int main()
{
int n=inn(),m=inn(),ec=inn(),x,y;
rep(i,1,ec) x=inn(),y=inn()+n,es[inn()].pb(mp(x,y));
rep(i,0,30) solve(n,m,i);
rep(i,1,m) print(ans[i]);
return Flush(),0;
}