CF#803 A. Maximal Binary Matrix(贪心)

A. Maximal Binary Matrix
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

You are given matrix with n rows and n columns filled with zeroes. You should put k ones in it in such a way that the resulting matrix is symmetrical with respect to the main diagonal (the diagonal that goes from the top left to the bottom right corner) and is lexicographically maximal.

One matrix is lexicographically greater than the other if the first different number in the first different row from the top in the first matrix is greater than the corresponding number in the second one.

If there exists no such matrix then output -1.

Input

The first line consists of two numbers n and k (1 ≤ n ≤ 1000 ≤ k ≤ 106).

Output

If the answer exists then output resulting matrix. Otherwise output -1.

Examples
input
2 1
output
1 0 
0 0 
input
3 2
output
1 0 0 
0 1 0 
0 0 0 
input
2 5
output

-1


题意:给出一个 n * n 的0矩阵,添加 k 个 1使其变为对称矩阵


#include <bits/stdc++.h>
using namespace std;

const int N = 100 + 10;
int a[N][N];

int main()
{
    int n, k;
    while(scanf("%d%d", &n, &k) == 2)
    {
        memset(a, 0, sizeof(a));
        if(n * n < k)
        {
            printf("-1\n");
            continue ;
        }
        for(int i = 0; i < n; i++)
        {
            for(int j = 0; j < n; j++)
            {
                if(!a[i][j])
                {
                    if(k && i == j) k--, a[i][j] = 1;
                    else if(k >= 2) k -= 2, a[i][j] = a[j][i] = 1;
                }
                printf("%d%c", a[i][j], j < n - 1 ? ' ' : '\n');
            }
        }
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值