利用PSO算法优化k-means初始聚类中心选择

本文整理了如何使用PSO(粒子群优化)算法来优化K-means聚类的初始中心选择,通过结合这两种方法提高聚类效果。参考了相关文章并实现了代码,原文链接见内。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考另一篇文章的。感觉思路很好。本人整理了一下代码。

原文链接 :https://blog.csdn.net/u013638553/article/details/40824715


import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;
import java.lang.reflect.Array;
import java.util.*;

public class Particle {
    public static void main(String[] args) throws IOException{
        PSO pso = new PSO();
        pso.readfile();
        pso.createpso();
        pso.Initialize();
        pso.Search();
    }
}

class Agent{

    public static int iPOSNum = 20;// 粒子个数
    public static int iAgentDim = 2;// 粒子维度

    public static int ikmeans = 2; // 聚类中心数

    private final double w = 0.9;
    private final double c1 = 1;
    private final double c2 = 1;
    public double[] dpos = new double[iAgentDim*ikmeans];// 粒子的位置
    public double[] dpbest = new double[iAgentDim*ikmeans]; // 粒子本身的最优位置
    public double[] dv = new double[iAgentDim*ikmeans]; // 粒子的速度
    private double m_dFitness=0;
    public double m_dBestfitness; // m_dBestfitness 粒子本身的最优解,适应度

    private Random random = new Random();
    public static double[] gbest = new double[iAgentDim * ikmeans];
    public static List<ArrayList<Double>> result = new ArrayList<ArrayList<Do
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值