【机器学习-周志华】——学习笔记(2.3)

上一篇

第二章:

第三节:

1. 查准率P:指查出来的有几个对的

2. 查全率R:指对的有几个被查出来

3. 特别的,对于二分类问题,将预测的正误与真实的正误交叉构成“混淆矩阵”,分为真正TP、假正FP、真反TN、假反FN

   

4. 很明显P-R是互斥的,做P-R曲线如下图,且与 P=R 的交点称为平衡点(BEP),平衡点对应的(P,R)值越高或P-R曲线围得面积越大,就越好。因此平衡点的值成为模型性能度量的标准之一。

5. 当然不同问题对PR要求不同,例如推荐算法看重P,罪犯检索看重R,因此提出更为常用的评价准则

其中β大于0小于1时P更重要,大于1sh时R更重要,,等于1时就是经典的F1

6. 另外,对于多个模型(同一问题不同数据集分割方法,例如交叉验证)的多个混淆矩阵,采取分别计算对应的P、R再取平均再计算F

7. ROC与AUC :

对于分类问题(以二分类为例),很多模型给出的是样本属于某个分类的概率(对于二分类就是预测为正的概率),我们一般称为样本分数,之后我们通过设定阈值来决定(大于阈值)哪些是预测为正的样本,再结合真实情况,由混淆矩阵计算TPR和FPR。

很明显,一个阈值值对应一个(TPR,FPR)值对,我们将阈值取遍[ 0,1 ],就能得到无数个(TPR,FPR)值对,这些值对构成的曲线就是TPR-FPR图,又称ROC曲线。曲线下方围成的面积就是AUC。

这个图的特征是,越靠近(0,0)点,阈值越趋近与1。整体曲线越趋近于(0,1)点,模型效果也好

但是,由于样本数是有限的,且一些小幅度阈值变化并不会影响TPR,FPR变化,所以ROC曲线不是“光滑的”,而且我们也没必要取遍[ 0,1 ],只需要取遍样本分数从大到小的不同的值即可。

下面给出AUC计算方法:

1)由大到小取遍分数作为阈值,由于ROC曲线不是“光滑的”,我们可以假设曲线面积就是每一个不同阈值的得来的(TPR,FPR)对应的小梯形的面积和,设共m个样本,当前分数为Sn,对应TPRn,FPRn,从分数S0到Sm-1则公式为

2)还有一种考虑,一个关于AUC的很有趣的性质是,它和Wilcoxon-Mann-Witney Test是等价的。而Wilcoxon-Mann-Witney Test就是从样本集中随机抽两个样本,满足正类样本的分数大于负类样本的分数(Positive class’s score is Greater than Negative class’s score,一下简写为PGN)的概率,这里包含“(A,B)与(B,A)对称重复”、“两正两负无意义比较”。所以简单来说,就是假设有M个正样本,N个负样本,将他们一一对比M*N次,PGN的“频率”,这个频率的分母是M*N但分子不是简单的PGN条目数,而是PGN条目数加0.5*“正负样本分数相等”的条目数。这种估计随着样本规模的扩大而逐渐逼近真实值。这个公式不好给,后面有代码。

3)在2的基础之上延伸出一种复杂度更低的计算方法——rank法,就是假设样本数为n,正样本数为M,负样本数为N,将分数由大到小排序,并设最大分数对应的样本的rank值为n,第二大的为n-1以此类推,这样一定程度上就保证rank代表该条样本对PGN的贡献。如果我们随机抽一个样本且它恰好为正样本(避免对称重复),当它与其他样本比较时,不难理解每个正样本都要和其他M-1个正样本比较一次这些是无意义的,减掉(避免无意义比较)。最终公式为,正样本rank和减去冗余比较除次数。

注意的是,对于 ‘2)' 中提到的“正负样本分数相等”的情况采取的方法是,相同分数的正样本rank用与其同等分数的全部样本rank和的平均值代替,在把所有正样本rank相加。公式泛化为下式,其中rankj是与正样本i分数值相同的I个样本的rank值。

上代码!

8. 代价曲线与代价敏感错误率

下一篇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值