----------人工智障C组大讨论day5----------

T1

水题,跑两遍 d i j k s t r a dijkstra dijkstra 求单源最短路就行了。


T2

考试时有一个肯定不能过的想法,就是从每个 ‘ + ’ ‘+’ +开始,跑 b f s bfs bfs,然后对于每个点更新为最小值。
然鹅,写挂了…

正解:
对空格建 A , B A,B A,B 两份图, A A A 内部只连横边, B B B 内部只连竖边,长度都为 0 0 0
考虑把转弯表示成在 A , B A,B A,B 之间切换。即对每个空格,在 A , B A,B A,B 之间连长度为 1 1 1 的边。以两图中的每个为 + + + 的点为源,做多源最短路。
某空格的答案就是它在 A , B A,B A,B 中对应的两点的最短路取 m i n min min 再加 。


T3

啊啊啊!!!(土拨鼠尖叫 . j p g .jpg .jpg
暴力 30 30 30 分莫名其妙就挂了!!!

30 30 30:暴力很好想,递推即可。
50 50 50:在暴力的基础上特判 k = 0 k=0 k=0 n = m n=m n=m 的情况,即求卡特兰数的第 n − 1 n-1 n1 项。由于 m o d = 999911659 = 2 ∗ 3 ∗ 4679 ∗ 35617 + 1 mod=999911659=2*3*4679*35617+1 mod=999911659=23467935617+1,所以可以对每个质数求组合数,在用中国剩余定理即可。
70 70 70:可以考虑用从 ( 0 , 0 ) (0,0) (0,0) 走到 ( n − 1 , m − 1 ) (n-1,m-1) (n1,m1) 的总方案数减去 x > y x>y x>y 不合法的方案。具体做法在之前老师讲过,略。
100 100 100:考虑容斥。
设从 ( x 0 , y 0 ) (x_0,y_0) (x0,y0) 走到 ( x 1 , y 1 ) (x_1,y_1) (x1,y1) 的方案数为 p a t h s ( x 0 , y 0 , x 1 , y 1 ) paths(x_0,y_0,x_1,y_1) paths(x0,y0,x1,y1)
f [ i ] f[i] f[i] 表示到达第 i i i 个危险点,并且不到达其他的危险点的总方案数。
转移方程为: f [ i ] = p a t h s ( 0 , 0 , x i , y i ) − ∑ x j ≤ x i , y j ≤ y i p a t h s ( x j , y j , x i , y i ) f[i]=paths(0,0,x_i,y_i)-\sum_{x_j≤x_i,y_j≤y_i}paths(x_j,y_j,x_i,y_i) f[i]=paths(0,0,xi,yi)xjxi,yjyipaths(xj,yj,xi,yi)

p s ps ps:由于数据随机,直接输出 1 1 1 会有意想不到的收获。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值