tensorflow在mnist集上的使用示例(一)

版权声明:转载请注明出处,谢谢。 https://blog.csdn.net/NNNNNNNNNNNNY/article/details/56845456

1.介绍

mnist集是一个手写数字识别的图片数据集,类似于深度学习方面的”hello world”啦。本文中,我们使用tensorflow在mnist集上做了一些简单的使用示例。
关于其详细讲解,详见:MNIST机器学习入门,英文版MNIST For ML Beginners下面的代码也都源自这个教程。
关于更更基础的介绍,可参考:入门级解读:小白也能看懂的TensorFlow介绍
如果对于代码中一些关于tensorflow的API不了解,可之间查找官网:All symbols in TensorFlow
都交代完了,下面直接上代码。

2.代码

代码中需要使用mnist数据集,发现在代码里下载的话老是出现错误。建议直接从网站上手动下载、解压缩,然后放在名为’MNIST_data’的文件夹内。

mnist_softmax

import input_data
import tensorflow as tf
# Import data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
Extracting MNIST_data/train-images-idx3-ubyte.gz
Extracting MNIST_data/train-labels-idx1-ubyte.gz
Extracting MNIST_data/t10k-images-idx3-ubyte.gz
Extracting MNIST_data/t10k-labels-idx1-ubyte.gz
# Create the model
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.matmul(x, W) + b
# Define loss and optimizer
y_ = tf.placeholder(tf.float32, [None, 10])
# The raw formulation of cross-entropy,
#
#   tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(tf.nn.softmax(y)),
#                                 reduction_indices=[1]))
#
# can be numerically unstable.
#
# So here we use tf.nn.softmax_cross_entropy_with_logits on the raw
# outputs of 'y', and then average across the batch.
cross_entropy = tf.reduce_mean(
    tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
# Train
for _ in range(1000):
  batch_xs, batch_ys = mnist.train.next_batch(100)
  sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
# Test trained model
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
0.919

mnist_multilayer_convolutional_network

import input_data
import tensorflow as tf
# Import data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
Extracting MNIST_data/train-images-idx3-ubyte.gz
Extracting MNIST_data/train-labels-idx1-ubyte.gz
Extracting MNIST_data/t10k-images-idx3-ubyte.gz
Extracting MNIST_data/t10k-labels-idx1-ubyte.gz
x = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 10])
sess = tf.InteractiveSession()
def weight_variable(shape):
  initial = tf.truncated_normal(shape, stddev=0.1)
  return tf.Variable(initial)

def bias_variable(shape):
  initial = tf.constant(0.1, shape=shape)
  return tf.Variable(initial)
def conv2d(x, W):
  return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

def max_pool_2x2(x):
  return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
                        strides=[1, 2, 2, 1], padding='SAME')
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
x_image = tf.reshape(x, [-1,28,28,1])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])

h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])

h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])

y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
cross_entropy = tf.reduce_mean(
    tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
sess.run(tf.global_variables_initializer())
for i in range(20000):
  batch = mnist.train.next_batch(50)
  if i%100 == 0:
    train_accuracy = accuracy.eval(feed_dict={
        x:batch[0], y_: batch[1], keep_prob: 1.0})
    print("step %d, training accuracy %g"%(i, train_accuracy))
  train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})

print("test accuracy %g"%accuracy.eval(feed_dict={
    x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
step 0, training accuracy 0.12
step 100, training accuracy 0.82
step 200, training accuracy 0.96
step 300, training accuracy 0.86
step 400, training accuracy 1
step 500, training accuracy 0.94
step 600, training accuracy 1
step 700, training accuracy 0.98
step 800, training accuracy 0.9
step 900, training accuracy 1
step 1000, training accuracy 0.98
step 1100, training accuracy 0.96
step 1200, training accuracy 0.98
step 1300, training accuracy 1
step 1400, training accuracy 0.98
step 1500, training accuracy 0.94
step 1600, training accuracy 0.94
step 1700, training accuracy 1
step 1800, training accuracy 1
step 1900, training accuracy 0.94
step 2000, training accuracy 0.96
step 2100, training accuracy 1
step 2200, training accuracy 1
step 2300, training accuracy 0.96
step 2400, training accuracy 0.98
step 2500, training accuracy 0.98
step 2600, training accuracy 0.96
step 2700, training accuracy 1
step 2800, training accuracy 1
step 2900, training accuracy 1
step 3000, training accuracy 0.98
step 3100, training accuracy 1
step 3200, training accuracy 1
step 3300, training accuracy 0.9
step 3400, training accuracy 0.98
step 3500, training accuracy 1
step 3600, training accuracy 1
step 3700, training accuracy 0.96
step 3800, training accuracy 1
step 3900, training accuracy 1
step 4000, training accuracy 1
step 4100, training accuracy 1
step 4200, training accuracy 1
step 4300, training accuracy 0.98
step 4400, training accuracy 0.98
step 4500, training accuracy 0.98
step 4600, training accuracy 1
step 4700, training accuracy 0.96
step 4800, training accuracy 1
step 4900, training accuracy 1
step 5000, training accuracy 1
step 5100, training accuracy 0.98
step 5200, training accuracy 1
step 5300, training accuracy 1
step 5400, training accuracy 1
step 5500, training accuracy 1
step 5600, training accuracy 1
step 5700, training accuracy 0.98
step 5800, training accuracy 1
step 5900, training accuracy 1
step 6000, training accuracy 1
step 6100, training accuracy 1
step 6200, training accuracy 0.98
step 6300, training accuracy 1
step 6400, training accuracy 1
step 6500, training accuracy 0.98
step 6600, training accuracy 0.98
step 6700, training accuracy 1
step 6800, training accuracy 1
step 6900, training accuracy 0.98
step 7000, training accuracy 1
step 7100, training accuracy 1
step 7200, training accuracy 1
step 7300, training accuracy 1
step 7400, training accuracy 0.98
step 7500, training accuracy 1
step 7600, training accuracy 1
step 7700, training accuracy 1
step 7800, training accuracy 0.98
step 7900, training accuracy 1
step 8000, training accuracy 0.98
step 8100, training accuracy 1
step 8200, training accuracy 1
step 8300, training accuracy 1
step 8400, training accuracy 1
step 8500, training accuracy 1
step 8600, training accuracy 0.98
step 8700, training accuracy 1
step 8800, training accuracy 1
step 8900, training accuracy 1
step 9000, training accuracy 1
step 9100, training accuracy 1
step 9200, training accuracy 0.98
step 9300, training accuracy 1
step 9400, training accuracy 1
step 9500, training accuracy 1
step 9600, training accuracy 1
step 9700, training accuracy 0.98
step 9800, training accuracy 1
step 9900, training accuracy 1
step 10000, training accuracy 0.98
step 10100, training accuracy 1
step 10200, training accuracy 1
step 10300, training accuracy 0.98
step 10400, training accuracy 1
step 10500, training accuracy 1
step 10600, training accuracy 1
step 10700, training accuracy 1
step 10800, training accuracy 1
step 10900, training accuracy 1
step 11000, training accuracy 1
step 11100, training accuracy 1
step 11200, training accuracy 1
step 11300, training accuracy 1
step 11400, training accuracy 0.98
step 11500, training accuracy 1
step 11600, training accuracy 1
step 11700, training accuracy 1
step 11800, training accuracy 0.98
step 11900, training accuracy 0.98
step 12000, training accuracy 1
step 12100, training accuracy 1
step 12200, training accuracy 1
step 12300, training accuracy 1
step 12400, training accuracy 1
step 12500, training accuracy 1
step 12600, training accuracy 1
step 12700, training accuracy 1
step 12800, training accuracy 1
step 12900, training accuracy 0.98
step 13000, training accuracy 1
step 13100, training accuracy 1
step 13200, training accuracy 1
step 13300, training accuracy 1
step 13400, training accuracy 1
step 13500, training accuracy 1
step 13600, training accuracy 1
step 13700, training accuracy 1
step 13800, training accuracy 1
step 13900, training accuracy 1
step 14000, training accuracy 1
step 14100, training accuracy 1
step 14200, training accuracy 1
step 14300, training accuracy 1
step 14400, training accuracy 0.98
step 14500, training accuracy 1
step 14600, training accuracy 1
step 14700, training accuracy 1
step 14800, training accuracy 1
step 14900, training accuracy 1
step 15000, training accuracy 1
step 15100, training accuracy 1
step 15200, training accuracy 1
step 15300, training accuracy 1
step 15400, training accuracy 0.98
step 15500, training accuracy 1
step 15600, training accuracy 1
step 15700, training accuracy 1
step 15800, training accuracy 1
step 15900, training accuracy 1
step 16000, training accuracy 1
step 16100, training accuracy 1
step 16200, training accuracy 0.96
step 16300, training accuracy 1
step 16400, training accuracy 1
step 16500, training accuracy 1
step 16600, training accuracy 1
step 16700, training accuracy 1
step 16800, training accuracy 1
step 16900, training accuracy 1
step 17000, training accuracy 1
step 17100, training accuracy 1
step 17200, training accuracy 1
step 17300, training accuracy 1
step 17400, training accuracy 1
step 17500, training accuracy 1
step 17600, training accuracy 1
step 17700, training accuracy 1
step 17800, training accuracy 1
step 17900, training accuracy 1
step 18000, training accuracy 1
step 18100, training accuracy 1
step 18200, training accuracy 1
step 18300, training accuracy 1
step 18400, training accuracy 1
step 18500, training accuracy 1
step 18600, training accuracy 1
step 18700, training accuracy 1
step 18800, training accuracy 1
step 18900, training accuracy 1
step 19000, training accuracy 1
step 19100, training accuracy 1
step 19200, training accuracy 1
step 19300, training accuracy 1
step 19400, training accuracy 1
step 19500, training accuracy 1
step 19600, training accuracy 1
step 19700, training accuracy 1
step 19800, training accuracy 1
step 19900, training accuracy 1
test accuracy 0.991

没有更多推荐了,返回首页