分类准确率和交叉熵损失的变化关系

1. 背景

最近做实验(分类问题)的过程中发现,随着训练集的平均交叉熵损失(Average Cross Entropy,ACE)降低,验证集ACE升高时,分类模型的准确率(Accuracy,ACC)也会出现升高的情况。
在栈溢出上也看到了同样类似的问题
请添加图片描述

2. 基本概念

2.1 准确率

请添加图片描述
准确率:在分类问题中,准确率的定义简单粗暴,就是看预测的类别是否和真实的类别一致。在分类任务中,对于一个N类任务,输出就是一个N维的向量,向量每一个位置就代表了一种类别,对应位置的值就代表预测的目标属于该类的概率,比如猫狗的分类,输出向量为[0.3, 0.7],就表示输入的图属于猫的概率为0.3,属于狗的为0.7。在输出预测结果时,我们是取概率最大的索引所对应的的标签作为最终预测的结果标签,比如在上个例子中,预测输出:输入的图像类别为狗。

2.2 交叉熵损失

在这里插入图片描述请添加图片描述
可以看出交叉熵损失只关心对正确类别的预测概率。(在这里为简化讨论,我们假设一个样本里只要一个标签,即简单的0-1二分类问题。)

3. 两者之间的变化关系

知乎:北野寺僧人的回答

分类问题一般看validation
accuracy,但是accuracy本身是个不可导的方程,因而用交叉熵作为损失函数来优化。但最终我们关心的还是准确度。
交叉熵是(负的)模型输出正确标签的似然度对数。和准确度有一定关系,但交叉熵的取值范围很大。有可能损失上升准确度也上升,毕竟准确度只是看预测概率最高的那个标签。准确度和交叉熵会出现以下情况:

交叉熵损失是一个平滑的函数,而准确率是非平滑的,准确率只依赖于输出概率的argmax。

● 如果正确标签的概率降低,但这个标签依然是概率最高的,会出现损失增加但准确度不变的结果。
● 如果数据集的标签很不平均,比如90%是类别A,那么模型一味增加预测A的比例,可能会让准确度上升,但loss可能也会以更大幅度上升(cross entropy的幅度可以很大)
● 如果模型非常自信,大多数正确标签的概率都接近1,那如果出现一个错误,准确率可能只会降低很少,但交叉熵可能会非常高。

作者认为真正部署的场景更加关注验证集的准确率,所以最终以Accuracy 为标准,交叉熵损失只是为了优化模型参数而设置的一个连续可微的损失函数。
如果在训练中出现交叉熵和准确率同时升高或者降低的问题,可能有以下原因:

  • 离群值(outliers):假设您有 10 张完全相同的图像,其中 9 张属于 A 类,一张属于 B 类。在这种情况下,模型更加倾向于给样本分为A类。但是,异常的图像(我这里理解是标签错误样本)可能会破坏模型的稳定性并使准确性降低。从理论上讲,一个模型应该90%概率预测为 A 类,但它可能会持续许多 epoch才能稳定。
    • 解决办法:为了处理这样的例子,我建议你使用梯度裁剪(将梯度保持在一定范围内,避免剧烈的波动,反映到损失函数上就是降低损失函数的剧烈变化)。如果想检查这种现象是否发生 - 可以检查您的损失分布(训练集中单个示例的损失)并寻找异常值。
  • 偏差(bias):现在想象一下,你有10张一模一样的图片,但其中5张分配了A类,5张分配了B类。在这种情况下,一个模型将尝试在这两个类别上分配大约50%-50%的分布。现在–你的模型在这里最多可以达到50%的准确性–从两个有效的类别中选择一个。
    • 解决办法:增加模型容量,针对非常类似的训练样本,增加可以有助于区分的图像标签的表达方式;如果需要查看是否发生这类情况,检查某一个样本在不同Epoch中的loss分布,如果出现loss逐渐变大。同时注意不要出现过拟合的情况。

If you want to check if such phenomenon occurs - check the distribution of losses of individual examples. If a distribution would be skewed toward higher values - you are probably suffering from bias.

  • 类别失衡(Class inbalance):如果90%的样本都属于同一类别,在训练的早期阶段模型几乎会将所有的样本预测为这一类,这可能造成非常大的损失函数,并且使预测的分布更加不稳定
    • 解决方法:1.梯度裁剪。2.将模型训练更多的epoch,模型会在进一步的训练中学习到细微的差别。3. 尝试类别平衡的方法,尝试分配sample_weights 或者 class_weights。查看类别分布。
  • 过强的正则化(Too strong regularization):如果设置了过于严格的正则化约束,会使得在训练的过程中更加关注于减小权重正则化而不是去学习一些重要的特征。
    • 解决方法:添加一个 categorical_crossentropy 作为度量并观察它是否也在减少。如果不是 - 那么这意味着正则化过于严格 - 尝试分配较少的权重惩罚。
  • 糟糕的模型设计:这种行为可能是由错误的模型设计引起的。有几种好的做法可以用来改进您的模型:
    • Batch Normalization
    • Gradient clipping 使您的模型训练更加稳定和高效。
    • Reduce bottleneck effect https://arxiv.org/abs/1512.00567
    • Add auxiliary classifiers

4. 引用

  1. https://stackoverflow.com/questions/48025267/relationship-between-loss-and-accuracy
  2. https://blog.csdn.net/xxy0118/article/details/80529676
  3. https://blog.csdn.net/u014421797/article/details/104689384
  4. https://www.zhihu.com/question/264892967
<think>嗯,用户现在问的是损失函数损失率的关系。首先我要确定这两个概念的定义,确保自己理解正确。损失函数(Loss Function)在机器学习中是衡量模型预测真实值之间差异的函数,而损失率(Loss Rate)可能是指训练过程中损失值的变化速率,或者是某种比例指标? 用户可能混淆了不同的术语,比如损失率可能指的是错误率(error rate),或者是每个epoch中的平均损失值?或者是在某些特定领域中的术语?需要先明确这两个概念的定义。 接下来,我需要回忆常见的机器学习术语中是否有“损失率”这个说法。通常,我们讲损失函数、准确率、错误率,但损失率可能不是标准术语。用户可能是在某些资料中看到这个词,或者自行组合了术语。这时候需要推测用户的意图,可能是想了解损失函数训练过程中损失值的变化之间的关系,或者损失函数模型性能指标的关系。 比如,在训练过程中,损失函数的值会随着epoch的增加而变化,可能用户说的损失率指的是每个epoch的损失下降速率。或者,损失率可能指测试集上的损失训练集损失的比率,用来判断过拟合。 还有一种可能,用户将损失准确率混淆,想了解损失函数准确率关系。这时候需要解释损失函数如何影响模型的准确率,但用户明确提到的是损失率,所以需要谨慎处理。 为了确保回答正确,我应该先定义这两个术语,然后解释它们之间的关系。如果“损失率”不是标准术语,需要指出这一点,并给出可能的解释,然后根据不同的情况分析它们的关系。 例如,如果用户所说的损失率指的是损失值随时间的变化率(即梯度),那么损失函数的梯度直接影响参数更新的方向大小。或者,损失率可能指训练过程中损失下降的速度,这时候微调次数(epoch)会影响损失率的变化。 另外,用户之前的问题是关于模型微调的损失函数微调次数的关系,现在又问损失函数损失率的关系,可能是在进一步深入探讨训练过程中的动态变化。因此,需要将这两个问题联系起来,可能用户想了解在训练过程中,损失函数的值如何变化,以及这种变化的速率如何影响训练效果。 可能的误解点:用户可能认为损失率是某种标准指标,但实际上在学术文献中并不常用。这时候需要澄清术语,并引导用户理解相关的标准概念,如损失值、梯度、学习率、准确率等。 总结回答的结构应该是:首先定义损失函数,然后解释可能的损失率的含义,接着分析两者的关系,最后举例说明它们在实际训练过程中的互动。</think>### 损失函数损失率”的关系解析 --- #### 一、概念澄清:什么是损失函数?什么是“损失率”? 1. **损失函数(Loss Function)** - **定义**:量化模型预测结果真实标签差异的数学函数(例如交叉熵、均方误差) - **核心作用**:指导参数更新方向,是模型优化的核心指标 - **示例**: $$ L = -\sum y_i \log(p_i) \quad (\text{分类任务}) $$ $$ L = \frac{1}{n}\sum (y_i - \hat{y}_i)^2 \quad (\text{回归任务}) $$ 2. **“损失率”(非标准术语的可能解释)** - **可能含义①**:训练过程中**损失值随时间的变化速率** (例如:第5到10个epoch间,损失从1.2降至0.8,平均变化速率为-0.08/epoch) - **可能含义②**:验证集损失训练集损失的**比率**(用于检测过拟合) $$ \text{损失率} = \frac{L_{val}}{L_{train}} \quad (\text{当比率>1.5时可能过拟合}) $$ - **可能含义③**:错误率(Error Rate)的误称(如分类错误的比例) --- #### 二、关键关系分析 ##### (1)如果“损失率”指损失变化速率 - **数学关系**: 损失变化速率 = 损失函数对时间的导数 $$ \frac{dL}{dt} \approx \frac{L_{epoch_{n}} - L_{epoch_{n-1}}}{\Delta t} $$ (在固定学习率下,$\Delta t$通常为1个epoch的时间) - **实际影响**: - **初始阶段**:高学习率导致快速下降(如从2.0→0.5,速率-1.5/epoch) - **后期阶段**:梯度减小导致速率趋缓(如从0.1→0.09,速率-0.01/epoch) - **工程应用**: 通过监控损失变化速率,可动态调整学习率: ```python if abs(dL_dt) < 0.001: # 速率过小时增大学习率 optimizer.lr *= 1.2 ``` ##### (2)如果“损失率”指验证/训练损失比 - **过拟合预警指标**: | 阶段 | 损失率范围 | 含义 | |--------------|------------|---------------------| | 正常训练 | 0.9~1.2 | 模型泛化能力正常 | | 轻度过拟合 | 1.2~1.5 | 需启用早停或数据增强 | | 严重过拟合 | >1.5 | 必须终止训练 | - **实际案例**: 在BERT微调中,当损失率从1.1突增至1.6时(如下图),应立即停止训练以避免资源浪费: ![过拟合曲线](https://via.placeholder.com/300x200/FF6B6B/FFFFFF?text=Loss+Ratio+Alert) --- #### 三、学习率的本质差异 注意区分“损失率”**学习率(Learning Rate)**: - **学习率**:控制参数更新步长的超参数(例如$\eta=0.001$) - **损失变化速率**:反映当前优化进程的观测结果 - **动态关系**: $$ \Delta w = -\eta \cdot \frac{\partial L}{\partial w} $$ (学习率$\eta$梯度共同决定参数更新量) --- #### 四、实际场景中的关键影响 1. **学习曲线诊断** - **理想情况**:训练/验证损失同步下降,速率逐渐减小 - **异常情况**: - 训练损失速率为正(上升):学习率过高或模型结构错误 - 验证损失率持续>1.3:数据分布不匹配或过拟合 2. **资源分配优化** 根据损失变化速率预测剩余训练时间: $$ t_{remain} = \frac{L_{current} - L_{target}}{|\frac{dL}{dt}|} $$ (例:当前损失0.5,目标0.3,速率-0.05/epoch → 剩余4个epoch) --- ### 总结 - **核心关系**:损失函数决定优化的目标,而“损失率”(无论何种定义)反映优化过程的动态特征 - **调参建议**: 1. 当损失变化速率绝对值<0.01时,考虑增加学习率或停止训练 2. 若验证集损失率>1.5,立即启用早停机制 3. 在关键任务中,建议同时监控损失准确率(如医疗影像诊断需保证验证准确率>95%)
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值