多标签分类问题中的评价指标:准确率,交叉熵代价函数

本文探讨了在多标签分类问题中,如何使用准确率、精确率和召回率作为评价指标,并详细阐述了为何神经网络选择交叉熵代价函数。通过混淆矩阵的概念,解释了在多分类情况下,如何计算每个类别的交叉熵损失,并最终求和得到总损失。
摘要由CSDN通过智能技术生成

在这里插入图片描述
参考博客
https://blog.csdn.net/qq_36396104/article/details/88647634
博客第一部分讲的平方代价函数的缺点,第二部分即论述为什么神经网络会使用交叉熵代价函数。
其中,讲到了交叉熵在多标签分类问题中的应用,这是我之前博客没有提到的,所以我在这篇博客中进行总结。
首先需要说说,评价分类模型进行分类处理是好是坏的几个指标
模型在处理分类问题时,分类结果分为以下四种情况:
True Positive(TP):将正类预测为正类数。
True Negative(TN):将负类预测为负类数。
False Positive(FP):将负类预测为正类数。
False Negative(FN):将正类预测为负类数。
其中TP和TN都属于分类器分类正确的情况,FP和FN都数据分类器分类错误的情况。
常用的几种评价指标有以下三种
准确率
准确率是指分类正确的样本占总样本个数的比例,即
在这里插入图片描述
精确率
精确率是指分类正确的正样本个数占分类器判定为正样本的样本个数的比例,即

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值