BZOJ 2005 NOI2010 能量采集 莫比乌斯反演

BZOJ又被卡了

这里写图片描述


这道题水过,作为第一道莫比乌斯反演的习题,我还是理解了好长时间分块的想法的,可能是我太菜了吧…


首先一个推导我们需要求的是

i=0nj=0m(gcd(i,j)21)

进行推导
=2i=0nj=0m(gcd(i,j))nm

n=d|nφ(d),ngcd(i,j),

=2i=0nj=0md|gcd(i,j)φ(d)nm

=2i=0nj=0md=1n[d|i][d|j]φ(d)nm

=2d=1ni=0n[d|i]j=0m[d|j]φ(d)nm

=2d=1nn/dm/dφ(d)nm

一组询问可以O(n)水过去,多组询问就分块搞
注意其中有一步,是直接把d转换到1到n了,其实这里有个取较小值操作,我们可以把n当作小的那个,然后来搞


#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
const int MAXN=100000+50;
long long n,m,is_not_prime[MAXN],phi[MAXN],prime[MAXN];
inline void getphi(){
    phi[1]=1;
    for(register int i=2;i<=n;i++){
        if(!is_not_prime[i]){
            prime[++prime[0]]=i;
            phi[i]=i-1;
        }
        for(register int j=1;j<=prime[0]&&i*prime[j]<=n;j++){
            is_not_prime[i*prime[j]]=1;
            if(i%prime[j]==0){
                phi[i*prime[j]]=prime[j]*phi[i];
                break;
            }else{
                phi[i*prime[j]]=phi[i]*(prime[j]-1);
            } 
        }
        phi[i]+=phi[i-1];
    }
}
int main(){
    scanf("%lld%lld",&n,&m);
    if(n<m) swap(n,m);
    getphi();
    long long end,final=0;
    for(register long long start=1;start<=m;start=end+1){
        end=min(n/(n/start),m/(m/start));
        final+=(phi[end]-phi[start-1])*(n/start)*(m/start);
    }
    printf("%lld\n",final*2-m*n);
    return 0;
}

这里写图片描述

发布了256 篇原创文章 · 获赞 78 · 访问量 14万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览