bzoj2005 [NOI2010]能量采集 莫比乌斯反演

题目链接:传送门

考虑点 ( x , y ) (x,y) (x,y)对答案的贡献:
g c d ( x , y ) = k gcd(x,y)=k gcd(x,y)=k x = a k , y = b k . x=ak,y=bk. x=ak,y=bk.
若有 x ′ , y ′ x',y' x,y满足 ( x ′ , y ′ ) (x',y') (x,y) ( 0 , 0 ) (0,0) (0,0) ( x , y ) (x,y) (x,y)的直线上,则有 y ′ x ′ = y x = b a \large\frac{y'}{x'}=\frac{y}{x}=\frac{b}{a} xy=xy=ab
( x ′ , y ′ ) (x',y') (x,y)珂以取的值为: ( a , b ) , ( 2 a , 2 b ) , . . . , ( ( k − 1 ) a , ( k − 1 ) b ) (a,b),(2a,2b),...,((k-1)a,(k-1)b) (a,b),(2a,2b),...,((k1)a,(k1)b)
所以 ( 0 , 0 ) (0,0) (0,0) ( x , y ) (x,y) (x,y)共有 k − 1 k-1 k1个点,即 g c d ( x , y ) − 1 gcd(x,y)-1 gcd(x,y)1个点qwq。
所以答案变成:
a n s = Σ i = 1 N Σ j = 1 M ( 2 ( g c d ( i , j ) − 1 ) + 1 ) ans=\Large\Sigma\large_{i=1}^{N}\Large\Sigma\large_{j=1}^M(2(gcd(i,j)-1)+1) ans=Σi=1NΣj=1M(2(gcd(i,j)1)+1)
= 2 Σ i = 1 N Σ i = 1 M g c d ( i , j ) − N ∗ M =2\Large\Sigma\large_{i=1}^N\Large\Sigma\large_{i=1}^Mgcd(i,j)-N*M =2Σi=1NΣi=1Mgcd(i,j)NM
调换一下枚举顺序,珂以得到 a n s = 2 Σ t = 1 m i n ( N , M ) t ( Σ i = 1 N Σ j = 1 M [ g c d ( i , j ) = = t ] ) − N ∗ M ans=2\Large\Sigma\large_{t=1}^{min(N,M)}t(\Large\Sigma\large_{i=1}^N\Large\Sigma\large_{j=1}^M[gcd(i,j)==t])-N*M ans=2Σt=1min(N,M)t(Σi=1NΣj=1M[gcd(i,j)==t])NM
对这坨东西大莉莫比乌斯反演,乱搞一波(乱搞过程:蒟蒻的博客qwq
得到 a n s = Σ t = 1 m i n ( N , M ) ( t Σ t ∣ d μ ( d t ) ⌊ N d ⌋ ⌊ M d ⌋ ) − N ∗ M ans=\Large\Sigma\large_{t=1}^{min(N,M)}(t\Large\Sigma\large_{t|d}\mu(\frac{d}{t})\lfloor\frac{N}{d}\rfloor\lfloor\frac{M}{d}\rfloor)-N*M ans=Σt=1min(N,M)(tΣtdμ(td)dNdM)NM
然后每次大莉枚举 t t t,对括号里的部分大莉枚举 t t t的倍数即可。
珂以证明这样时间复杂度是 O ( n l o g n ) O(nlogn) O(nlogn)的qwq
话说这道题好像还有一个查询只用 O ( n ) O(\sqrt n) O(n )的神仙做法……比较玄学qwq

毒瘤代码

#include<stdio.h>
#include<cstring> 
#include<algorithm>
#define re register int
#define rl register ll
using namespace std;
typedef long long ll;
int read() {
	re x=0,f=1;
	char ch=getchar();
	while(ch<'0' || ch>'9') {
		if(ch=='-')	f=-1;
		ch=getchar();
	}
	while(ch>='0' && ch<='9') {
		x=10*x+ch-'0';
		ch=getchar();
	}
	return x*f;
}
const int Size=100005;
int tot,prime[Size],mu[Size];
bool vis[Size];
void getp(int maxn) {
	mu[1]=1;
	for(re i=2; i<=maxn; i++) {
		if(!vis[i]) {
			prime[++tot]=i;
			mu[i]=-1;
		}
		for(re j=1; j<=tot && i*prime[j]<=maxn; j++) {
			vis[i*prime[j]]=true;
			if(i%prime[j]==0)	break;
			mu[i*prime[j]]=-mu[i];
		}
	}
}
int main() {
	int n=read();
	int m=read();
	int minn=min(n,m);
	getp(minn);
	ll ans=0;
	for(re t=1; t<=minn; t++) {
		int lst;
		ll sum=0;
		for(re i=t; i<=minn; i+=t) {
			sum+=(ll)mu[i/t]*(n/i)*(m/i);
		}
		ans+=sum*t;
	}
	printf("%lld",(ans<<1ll)-(ll)n*m);
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值