bzoj2005 [NOI2010]能量采集 莫比乌斯反演

题目链接:传送门

考虑点(x,y)(x,y)对答案的贡献:
gcd(x,y)=kgcd(x,y)=kx=ak,y=bk.x=ak,y=bk.
若有x,yx',y'满足(x,y)(x',y')(0,0)(0,0)(x,y)(x,y)的直线上,则有yx=yx=ba\large\frac{y'}{x'}=\frac{y}{x}=\frac{b}{a}
(x,y)(x',y')珂以取的值为:(a,b),(2a,2b),...,((k1)a,(k1)b)(a,b),(2a,2b),...,((k-1)a,(k-1)b)
所以(0,0)(0,0)(x,y)(x,y)共有k1k-1个点,即gcd(x,y)1gcd(x,y)-1个点qwq。
所以答案变成:
ans=Σi=1NΣj=1M(2(gcd(i,j)1)+1)ans=\Large\Sigma\large_{i=1}^{N}\Large\Sigma\large_{j=1}^M(2(gcd(i,j)-1)+1)
=2Σi=1NΣi=1Mgcd(i,j)NM=2\Large\Sigma\large_{i=1}^N\Large\Sigma\large_{i=1}^Mgcd(i,j)-N*M
调换一下枚举顺序,珂以得到ans=2Σt=1min(N,M)t(Σi=1NΣj=1M[gcd(i,j)==t])NMans=2\Large\Sigma\large_{t=1}^{min(N,M)}t(\Large\Sigma\large_{i=1}^N\Large\Sigma\large_{j=1}^M[gcd(i,j)==t])-N*M
对这坨东西大莉莫比乌斯反演,乱搞一波(乱搞过程:蒟蒻的博客qwq
得到ans=Σt=1min(N,M)(tΣtdμ(dt)NdMd)NMans=\Large\Sigma\large_{t=1}^{min(N,M)}(t\Large\Sigma\large_{t|d}\mu(\frac{d}{t})\lfloor\frac{N}{d}\rfloor\lfloor\frac{M}{d}\rfloor)-N*M
然后每次大莉枚举tt,对括号里的部分大莉枚举tt的倍数即可。
珂以证明这样时间复杂度是O(nlogn)O(nlogn)的qwq
话说这道题好像还有一个查询只用O(n)O(\sqrt n)的神仙做法……比较玄学qwq

毒瘤代码

#include<stdio.h>
#include<cstring> 
#include<algorithm>
#define re register int
#define rl register ll
using namespace std;
typedef long long ll;
int read() {
	re x=0,f=1;
	char ch=getchar();
	while(ch<'0' || ch>'9') {
		if(ch=='-')	f=-1;
		ch=getchar();
	}
	while(ch>='0' && ch<='9') {
		x=10*x+ch-'0';
		ch=getchar();
	}
	return x*f;
}
const int Size=100005;
int tot,prime[Size],mu[Size];
bool vis[Size];
void getp(int maxn) {
	mu[1]=1;
	for(re i=2; i<=maxn; i++) {
		if(!vis[i]) {
			prime[++tot]=i;
			mu[i]=-1;
		}
		for(re j=1; j<=tot && i*prime[j]<=maxn; j++) {
			vis[i*prime[j]]=true;
			if(i%prime[j]==0)	break;
			mu[i*prime[j]]=-mu[i];
		}
	}
}
int main() {
	int n=read();
	int m=read();
	int minn=min(n,m);
	getp(minn);
	ll ans=0;
	for(re t=1; t<=minn; t++) {
		int lst;
		ll sum=0;
		for(re i=t; i<=minn; i+=t) {
			sum+=(ll)mu[i/t]*(n/i)*(m/i);
		}
		ans+=sum*t;
	}
	printf("%lld",(ans<<1ll)-(ll)n*m);
	return 0;
}
发布了97 篇原创文章 · 获赞 220 · 访问量 7万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览