题面
Description
栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量。在这些植物采集能量后,
栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起。 栋栋的植物种得非常整齐,一共有n列,每列
有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,
表示是在第x列,y的范围是1至m,表示是在第x列的第y棵。 由于能量汇集机器较大,不便移动,栋栋将它放在了
一个角上,坐标正好是(0, 0)。 能量汇集机器在汇集的过程中有一定的能量损失。如果一棵植物与能量汇集机器
连接而成的线段上有k棵植物,则能量的损失为2k + 1。例如,当能量汇集机器收集坐标为(2, 4)的植物时,由于
连接线段上存在一棵植物(1, 2),会产生3的能量损失。注意,如果一棵植物与能量汇集机器连接的线段上没有植
物,则能量损失为1。现在要计算总的能量损失。 下面给出了一个能量采集的例子,其中n = 5,m = 4,一共有20
棵植物,在每棵植物上标明了能量汇集机器收集它的能量时产生的能量损失。 在这个例子中,总共产生了36的能
量损失。
Input
仅包含一行,为两个整数n和m。
Output
仅包含一个整数,表示总共产生的能量损失。
Sample Input
【样例输入1】
5 4
【样例输入2】
3 4
Sample Output
【样例输出1】
36
【样例输出2】
20
对于100%的数据:1 ≤ n, m ≤ 100,000。
题解
对于 ( i , j ) (i, j) (i,j),它与 ( 0 , 0 ) (0,0) (0,0)连线上有 g c d ( i , j ) − 1 gcd (i, j) - 1 gcd(i,j)−1棵植物。
所求答案即为 2 ∗ ∑ i = 1 n ∑ j = 1 m g c d ( i , j ) − n ∗ m 2 * \sum _{i=1} ^n \sum _{j=1} ^m gcd (i, j) - n * m 2∗∑i=1n∑j=1mgcd(i,j)−n∗m
由莫比乌斯反演得: ∑ i = 1 n ∑ j = 1 m g c d ( i , j ) = ∑ i = 1 n φ ( i ) ⋅ ⌊ n i ⌋ ⌊ m i ⌋ \sum _{i=1} ^n \sum _{j=1} ^m gcd (i, j) = \sum _{i=1} ^n \varphi (i) \cdot \lfloor \frac n i \rfloor \lfloor \frac m i \rfloor ∑i=1n∑j=1mgcd(i,j)=∑i=1nφ(i)⋅⌊in⌋⌊im⌋
线性筛求 φ ( i ) \varphi(i) φ(i)后, O ( n ) O(n) O(n)或数论分块 O ( n ) O(\sqrt n) O(n)求答案。
#include <bits/stdc++.h>
using namespace std;
typedef long long ll ;
const int maxn = 1e5 + 10 ;
ll phi[maxn], prime[maxn], tot ;
bool vis[maxn] ;
void init () {
phi[1] = 1 ;
for (int i = 2; i < maxn; i ++) {
if (!vis[i]) prime[++ tot] = i, phi[i] = i - 1 ;
for (int j = 1; j <= tot && i * prime[j] < maxn; j ++) {
vis[i * prime[j]] = 1 ;
if (i % prime[j] == 0) {
phi[i * prime[j]] = phi[i] * prime[j] ;
break ;
}
phi[i * prime[j]] = phi[i] * (prime[j] - 1) ;
}
}
//for (int i = 1; i < maxn; i ++) phi[i] += phi[i - 1] ;
}
int main() {
init () ;
ll n, m ;
cin >> n >> m ;
if (n > m) swap (n, m) ;
ll ans = 0 ;
for (int i = 1; i <= n; i ++) ans += 1ll * phi[i] * (n / i) * (m / i) ;
printf("%lld\n", ans * 2 - n * m) ;
return 0 ;
}