Homework 4

在这里插入图片描述

Q 1

(a) True. In degenerate LP where two or more basic variables tie for being leaving variable, no matter which one is chosen, in the step 2 of the iteration. The one or ones not chosen to be the leaving variable also will have a value of zero in the new BF solution.
(b) True. The simplex method would stop with the result that Z is unbounded, which means that a mistake for real problem has been made and the model probably has been misformulated, alternatively, a computational mistake has occurred.
© False. When the problem has multiple optimal solution, at least one of the n o n − b a s i c ‾ \underline{non-basic} nonbasic variables has a coefficient of zero in the final row 0.
(b) True. If the iteration has no leaving variable, the feasible region is unbounded.

在这里插入图片描述

Q 2

(a) 在这里插入图片描述

The feasible region is the shadow part showed below the blue line in the picture.As it indicates, the feasible region is unbounded.

(b) Yes. At the line : − x 1 + x 2 = 0 -x_1+x_2=0 x1+x2=0 ,move along x 1 x_1 x1, it could find the optional solution at the stop at x 1 = 10 x_1=10 x1=10, Z m = − 10 Z_m=-10 Zm=10.
© The optional solution equals to the one in (b).
(d) No,it might exist at the initial point of the feasible space. Ignore the point equal to zero.

在这里插入图片描述

Q 3

bv Z x 1 x 2 x 3 x 4 s 1 s 2 r h s Z 1 − 1 − 1 − 1 − 1 0 0 0 s 1 0 1 1 0 0 1 0 3 s 2 0 0 0 1 1 0 1 2 (1) \begin{array}{c|clrcccc|} \text{bv}&\text{Z}&x_1&x_2&x_3&x_4&s_1&s_2&rhs \\ \hline Z&1&-1&-1&-1&-1&0&0&0 \\ \hline s_1&0&1&1&0&0&1&0&3\\ \hline s_2&0&0&0&1&1&0&1&2\\ \end{array} \tag1 bvZs1s2Z100x1110x2110x3101x4101s1010s2001rhs032(1)

bv Z x 1 x 2 x 3 x 4 s 1 s 2 r h s Z 1 − 1 − 1 0 0 0 1 2 s 1 0 1 1 0 0 1 0 3 x 4 0 0 0 1 1 0 1 2 (2) \begin {array}{c|clrcccc|} \text{bv}&\text{Z}&x_1&x_2&x_3&x_4&s_1&s_2&rhs\\ \hline Z&1&-1&-1&0&0&0&1&2\\ \hline s_1&0&1&1&0&0&1&0&3\\ \hline x_4&0&0&0&1&1&0&1&2\\ \end{array} \tag2 bvZs1x4Z100x1110x2110x3001x4001s1010s2101rhs232(2)

b v Z x 1 x 2 x 3 x 4 s 1 s 2 r h s Z 1 0 0 0 0 1 1 5 x 2 0 1 1 0 0 1 0 3 x 4 0 0 0 1 1 0 1 2 (3) \begin{array}{c|clrcccc|} bv&Z&x_1&x_2&x_3&x_4&s_1&s_2&rhs\\ \hline Z&1&0&0&0&0&1&1&5\\ \hline x_2&0&1&1&0&0&1&0&3\\ \hline x_4&0&0&0&1&1&0&1&2 \end{array} \tag3 bvZx2x4Z100x1010x2010x3001x4001s1110s2101rhs532(3)

The optimal solution is ( x 1 , x 2 , x 3 , x 4 ) = ( 0 , 3 , 0 , 2 ) (x_1,x_2,x_3,x_4)=(0,3,0,2) (x1,x2,x3,x4)=(0,3,0,2), and the subsequent Z m = 5 Z_m=5 Zm=5.

在这里插入图片描述

Q 4

(a)
在这里插入图片描述
在这里插入图片描述
There is no cross region between the two constraint space. Consequently, the problem has no feasible region.

(b)
Big M method

m i n Z = m a x ( − Z ) , l e t − Z = Z ‾ min Z=max( -Z),let -Z=\overline{Z} minZ=max(Z),letZ=Z
Z ‾ = − 5000 x 1 − 7000 x 2 \overline{Z}=-5000x_1-7000x_2 Z=5000x17000x2
Let M → ∞ M\rightarrow\infty M
max Z ‾ \overline{Z} Z
s.t. 5000 x 1 + 7000 x 2 + M x 3 ‾ + M x 4 ‾ + Z ‾ = 0 ( 0 ) 5000x_1+7000x_2+M\overline{x_3}+M\overline{x_4}+\overline{Z}=0\quad(0) 5000x1+7000x2+Mx3+Mx4+Z=0(0)
− 2 x 1 + x 2 + s 1 + x 3 ‾ = 1 ( 1 ) \quad-2x_1+x_2+s_1+\overline{x_3}=1\qquad(1) 2x1+x2+s1+x3=1(1)
x 1 − 2 x 2 + s 2 + x 4 ‾ = 1 ( 2 ) \quad x_1-2x_2+s_2+\overline{x_4}=1\qquad(2) x12x2+s2+x4=1(2)
New eq.(0)=eq.(0)-eq.(1)-eq.(2)= Z ‾ + ( 5000 + M ) x 1 + ( 7000 + M ) x 2 − M s 1 − M s 2 = − 2 M \overline{Z}+(5000+M)x_1+(7000+M)x_2-Ms_1-Ms_2=-2M Z+(5000+M)x1+(7000+M)x2Ms1Ms2=2M
Iteration 0
b v Z ‾ x 1 x 2 x 3 ‾ s 1 s 2 x 4 ‾ r h s Z ‾ 1 5000 + M 7000 + M 0 − M − M 0 − 2 M x 3 ‾ 0 − 2 1 1 1 0 0 1 x 4 ‾ 0 1 − 2 0 0 1 1 1 \begin{array}{c|clr} bv&\overline{Z}&x_1&x_2&\overline{x_3}&s_1&s_2&\overline{x_4}&rhs\\ \hline \overline{Z}&1&5000+M&7000+M&0&-M&-M&0&-2M\\ \hline\overline{x_3}&0&-2&1&1&1&0&0&1\\ \hline \overline{x_4}&0&1&-2&0&0&1&1&1\\ \end{array} bvZx3x4Z100x15000+M21x27000+M12x3010s1M10s2M01x4001rhs2M11
Iteration 1
b v Z ‾ x 1 x 2 x 3 ‾ s 1 s 2 x 4 ‾ r h s Z ‾ 1 5000 − M 7000 + 2 M M 0 − M 0 − M s 1 0 − 2 1 1 1 0 0 1 x 4 ‾ 0 1 − 2 0 0 1 1 1 \begin{array}{c|clr} bv&\overline{Z}&x_1&x_2&\overline{x_3}&s_1&s_2&\overline{x_4}&rhs\\ \hline\overline{Z}&1&5000-M&7000+2M&M&0&-M&0&-M\\ \hline s_1&0&-2&1&1&1&0&0&1\\ \hline\overline{x_4}&0&1&-2&0&0&1&1&1\\ \end{array} bvZs1x4Z100x15000M21x27000+2M12x3M10s1010s2M01x4001rhsM11
Iteration 2
b v Z ‾ x 1 x 2 x 3 ‾ s 1 s 2 x 4 ‾ r h s Z ‾ 1 5000 7000 M 0 0 M 0 s 1 0 − 2 1 1 1 0 0 1 s 2 0 1 − 2 0 0 1 1 1 \begin{array}{c|clr} bv&\overline{Z}&x_1&x_2&\overline{x_3}&s_1&s_2&\overline{x_4}&rhs\\ \hline \overline{Z}&1&5000&7000&M&0&0&M&0\\ \hline s_1&0&-2&1&1&1&0&0&1\\ \hline s_2&0&1&-2&0&0&1&1&1\\ \end{array} bvZs1s2Z100x1500021x2700012x3M10s1010s2001x4M01rhs011
As it indicates, the original LP is infeasible.
© Two phase method

Phase 1:maximize W = − x 3 ‾ − x 4 ‾ W=-\overline{x_3}-\overline{x_4} W=x3x4

s.t. − 2 x 1 + x 2 + s 1 + x 3 ‾ = 1 ( 1 ) -2x_1+x_2+s_1+\overline{x_3}=1\quad(1) 2x1+x2+s1+x3=1(1)
x 1 − 2 x 2 + s 2 + x 4 ‾ = 1 ( 2 ) \quad x_1-2x_2+s_2+\overline{x_4}=1\quad(2) x12x2+s2+x4=1(2)

New eq.(0)=eq.(0)-eq.(1)-eq.(2)
W + x 1 + x 2 − s 1 − s 2 = − 2 ( 0 ) W+x_1+x_2-s_1-s_2=-2\quad(0) W+x1+x2s1s2=2(0)

Iteration 0
b v W x 1 x 2 s 1 s 2 x 3 ‾ x 4 ‾ r h s W 1 1 1 − 1 − 1 0 0 − 2 x 3 ‾ 0 − 2 1 1 0 1 0 1 x 4 ‾ 0 1 − 2 0 1 0 1 1 \begin{array}{c|clr} bv&W&x_1&x_2&s_1&s_2&\overline{x_3}&\overline{x_4}&rhs\\ \hline W&1&1&1&-1&-1&0&0&-2\\ \hline\overline{x_3}&0&-2&1&1&0&1&0&1\\ \hline\overline{x_4}&0&1&-2&0&1&0&1&1 \end{array} bvWx3x4W100x1121x2112s1110s2101x3010x4001rhs211
Iteration 1
b v W x 1 x 2 s 1 s 2 x 3 ‾ x 4 ‾ r h s W 1 − 1 2 0 − 1 1 0 − 1 s 1 0 − 2 1 1 0 1 0 1 x 4 ‾ 0 1 − 2 0 1 0 1 1 \begin{array}{c|clr} bv&W&x_1&x_2&s_1&s_2&\overline{x_3}&\overline{x_4}&rhs\\ \hline W&1&-1&2&0&-1&1&0&-1\\ \hline s_1&0&-2&1&1&0&1&0&1\\ \hline \overline{x_4}&0&1&-2&0&1&0&1&1\\ \end{array} bvWs1x4W100x1121x2212s1010s2101x3110x4001rhs111
Iteration 2
b v W x 1 x 2 s 1 s 2 x 3 ‾ x 4 ‾ r h s W 1 0 0 0 0 1 1 0 s 1 0 − 2 1 1 0 1 0 1 s 2 0 1 − 2 0 1 0 1 1 \begin{array}{c|clr} bv&W&x_1&x_2&s_1&s_2&\overline{x_3}&\overline{x_4}&rhs\\ \hline W&1&0&0&0&0&1&1&0\\ \hline s_1&0&-2&1&1&0&1&0&1\\ \hline s_2&0&1&-2&0&1&0&1&1 \end{array} bvWs1s2W100x1021x2012s1010s2001x3110x4101rhs011
W = 0 W=0 W=0, x 3 ‾ = 1 , x 4 ‾ = 1 \overline{x_3}=1,\overline{x_4}=1 x3=1,x4=1.This indicates that the original problem is infeasible.

在这里插入图片描述

Q 5

(a) Big M method
m i n Z = m a x ( − Z ) , l e t ( − Z ) = Z ‾ minZ=max(-Z), let (-Z)=\overline{Z} minZ=max(Z),let(Z)=Z
Maximization Z ‾ \overline{Z} Z
(0) Z ‾ = 3 x 1 + 2 x 2 + 4 x 3 − M x 4 ‾ \overline{Z}=3x_1+2x_2+4x_3-M\overline{x_4} Z=3x1+2x2+4x3Mx4
(1) 2 x 1 + x 2 + 3 x 3 + x 4 ‾ = 60 2x_1+x_2+3x_3+\overline{x_4}=60 2x1+x2+3x3+x4=60
(2) 3 x 1 + 3 x 2 + 5 x 3 ≥ 120 3x_1+3x_2+5x_3\geq120 3x1+3x2+5x3120
x j ≥ 0 , j = 1 , 2 , 3 x_j\geq0,j=1,2,3 xj0,j=1,2,3

New eq.(0)=eq.(0)-M eq.(1)= Z ‾ + ( − 2 M − 3 ) x 1 + ( M − 2 ) x 2 + ( 3 M − 4 ) x 3 = 60 \overline{Z}+(-2M-3)x_1+(M-2)x_2+(3M-4)x_3=60 Z+(2M3)x1+(M2)x2+(3M4)x3=60
Iteration 0
b v Z ‾ x 1 x 2 x 3 x 4 ‾ x 5 r h s Z ‾ 1 − 2 M − 3 − M − 2 − 3 M − 4 0 0 − 60 M x 4 ‾ 0 2 1 3 1 0 60 x 5 0 3 3 5 0 1 120 \begin{array}{c|clr} bv&\overline{Z}&x_1&x_2&x_3&\overline{x_4}&x_5&rhs\\ \hline \overline{Z}&1&-2M-3&-M-2&-3M-4&0&0&-60M\\ \hline \overline{x_4}&0&2&1&3&1&0&60\\ \hline x_5&0&3&3&5&0&1&120\\ \end{array} bvZx4x5Z100x12M323x2M213x33M435x4010x5001rhs60M60120
Iteration 1
b v Z ‾ x 1 x 2 x 3 x 4 ‾ x 5 r h s Z ‾ 1 − 1 / 3 − 2 / 3 0 M + 4 / 3 0 80 x 3 0 2 / 3 1 / 3 1 1 / 3 0 20 x 5 0 − 1 / 3 4 / 3 0 − 5 / 3 1 20 \begin{array}{c|clr} bv&\overline{Z}&x_1&x_2&x_3&\overline{x_4}&x_5&rhs\\ \hline \overline{Z}&1&-1/3&-2/3&0&M+4/3&0&80\\ \hline x_3&0&2/3&1/3&1&1/3&0&20\\ \hline x_5&0&-1/3&4/3&0&-5/3&1&20\\ \end{array} bvZx3x5Z100x11/32/31/3x22/31/34/3x3010x4M+4/31/35/3x5001rhs802020
Iteration 2
b v Z ‾ x 1 x 2 x 3 x 4 ‾ x 5 r h s Z ‾ 1 − 1 / 2 0 0 M + 19 / 18 1 / 6 80 + 10 / 3 x 3 0 3 / 4 0 1 17 / 36 − 1 / 12 20 − 5 / 3 x 2 0 − 1 / 4 1 0 − 5 / 12 1 / 4 5 \begin{array}{c|clr} bv&\overline{Z}&x_1&x_2&x_3&\overline{x_4}&x_5&rhs\\ \hline \overline{Z}&1&-1/2&0&0&M+19/18&1/6&80+10/3\\ \hline x_3&0&3/4&0&1&17/36&-1/12&20-5/3\\ \hline x_2&0&-1/4&1&0&-5/12&1/4&5\\ \end{array} bvZx3x2Z100x11/23/41/4x2001x3010x4M+19/1817/365/12x51/61/121/4rhs80+10/3205/35
Iteration 3
b v Z ‾ x 1 x 2 x 3 x 4 ‾ x 5 r h s Z ‾ 1 0 0 2 / 3 37 / 27 + M 1 / 9 860 / 9 x 1 0 1 0 4 / 3 17 / 27 − 1 / 9 220 / 9 x 2 0 0 1 1 / 3 − 7 / 27 2 / 9 85 / 9 \begin{array}{c|clr} bv&\overline{Z}&x_1&x_2&x_3&\overline{x_4}&x_5&rhs\\ \hline \overline{Z}&1&0&0&2/3&37/27+M&1/9&860/9\\ \hline x_1&0&1&0&4/3&17/27&-1/9&220/9\\ \hline x_2&0&0&1&1/3&-7/27&2/9&85/9\\ \end{array} bvZx1x2Z100x1010x2001x32/34/31/3x437/27+M17/277/27x51/91/92/9rhs860/9220/985/9

Let x 4 ‾ = 0 \overline{x_4}=0 x4=0, we could get the optimal solution ( x 1 , x 2 , x 3 ) = ( 220 / 9 , 85 / 9 , 5 / 9 ) (x_1,x_2,x_3)=(220/9,85/9,5/9) (x1,x2,x3)=(220/9,85/9,5/9), and the Z ‾ m a x = 860 / 9 \overline{Z}_{max}=860/9 Zmax=860/9 , that is, Z m i n = − 860 / 9 Z_{min}=-860/9 Zmin=860/9
(b)Two phase method

Phase 1:maximize W = − x 4 ‾ − x 6 ‾ W=-\overline{x_4}-\overline{x_6} W=x4x6 ( u n t i l x 4 ‾ = 0 , x 6 ‾ = 0 ) (until \overline{x_4}=0,\overline{x_6}=0) (untilx4=0,x6=0)
Phase 2:maximize Z ‾ = − 3 x 1 − 2 x 2 − 4 x 3 \overline{Z}=-3x_1-2x_2-4x_3 Z=3x12x24x3 ( w i t h x 4 ‾ = 0 , x 6 ‾ = 0 ) (with \overline{x_4}=0,\overline{x_6}=0) (withx4=0,x6=0)

Phase 1 problem:
Maximize W = − x 4 ‾ − x 6 ‾ W=-\overline{x_4}-\overline{x_6} W=x4x6
subject to:
(1) 2 x 1 + x 2 + 3 x 3 + x 4 ‾ = 60 2x_1+x_2+3x_3+\overline{x_4}=60 2x1+x2+3x3+x4=60
(2) 3 x 1 + 3 x 2 + 5 x 3 − x 5 + x 6 ‾ = 120 3x_1+3x_2+5x_3-x_5+\overline{x_6}=120 3x1+3x2+5x3x5+x6=120

New eq.(0)= W − 5 x 1 − 4 x 2 − 8 x 3 + x 5 = − 180 W-5x_1-4x_2-8x_3+x_5=-180 W5x14x28x3+x5=180
Iteration 0
b v W x 1 x 2 x 3 x 4 ‾ x 5 x 6 ‾ r h s W 1 − 5 − 4 − 8 0 1 0 − 180 x 4 ‾ 0 2 1 3 1 0 0 60 x 6 ‾ 0 3 3 5 0 − 1 1 120 \begin{array}{c|clr} bv&W&x_1&x_2&x_3&\overline{x_4}&x_5&\overline{x_6}&rhs\\ \hline W&1&-5&-4&-8&0&1&0&-180\\ \hline \overline{x_4}&0&2&1&3&1&0&0&60\\ \hline \overline{x_6} &0&3&3&5&0&-1&1&120\\ \end{array} bvWx4x6W100x1523x2413x3835x4010x5101x6001rhs18060120
Iteration 1
b v W x 1 x 2 x 3 x 4 ‾ x 5 x 6 ‾ r h s W 1 1 / 3 − 4 / 3 0 0 1 0 20 x 3 0 2 / 3 1 / 3 1 1 / 3 0 0 20 x 6 ‾ 0 − 1 / 3 4 / 3 0 − 5 / 3 − 1 1 20 \begin{array}{c|clr} bv&W&x_1&x_2&x_3&\overline{x_4}&x_5&\overline{x_6}&rhs\\ \hline W&1&1/3&-4/3&0&0&1&0&20\\ \hline x_3&0&2/3&1/3&1&1/3&0&0&20\\ \hline \overline{x_6}&0&-1/3&4/3&0&-5/3&-1&1&20\\ \end{array} bvWx3x6W100x11/32/31/3x24/31/34/3x3010x401/35/3x5101x6001rhs202020
Iteration 2
b v W x 1 x 2 x 3 x 4 ‾ x 5 x 6 ‾ r h s W 1 0 0 0 − 5 / 3 0 1 0 x 3 0 3 / 4 0 1 3 / 4 1 / 4 − 1 / 4 15 x 2 0 − 1 / 4 1 0 − 5 / 4 − 3 / 4 3 / 4 15 \begin{array}{c|clr} bv&W&x_1&x_2&x_3&\overline{x_4}&x_5&\overline{x_6}&rhs\\ \hline W&1&0&0&0&-5/3&0&1&0\\ \hline x_3&0&3/4&0&1&3/4&1/4&-1/4&15\\ \hline x_2&0&-1/4&1&0&-5/4&-3/4&3/4&15\\ \end{array} bvWx3x2W100x103/41/4x2001x3010x45/33/45/4x501/43/4x611/43/4rhs01515
Phase 2 problem:
Maximize Z ‾ = − 3 x 1 − 2 x 2 − 4 x 3 \overline{Z}=-3x_1-2x_2-4x_3 Z=3x12x24x3
subject to:
(1) 2 x 1 + x 2 + 3 x 3 = 60 2x_1+x_2+3x_3=60 2x1+x2+3x3=60
(2) 3 x 1 + 3 x 2 + 5 x 3 − x 5 = 120 3x_1+3x_2+5x_3-x_5=120 3x1+3x2+5x3x5=120
(1) drop x 4 ‾ , x 6 ‾ \overline{x_4},\overline{x_6} x4,x6

b v Z ‾ x 1 x 2 x 3 x 5 r h s Z ‾ 1 0 0 0 0 0 x 3 0 3 / 4 0 1 1 / 4 15 x 2 0 − 1 / 4 1 0 − 3 / 4 15 (1) \begin{array}{c|clr} bv&\overline{Z}&x_1&x_2&x_3&x_5&rhs\\ \hline \overline{Z}&1&0&0&0&0&0\\ \hline x_3&0&3/4&0&1&1/4&15\\ \hline x_2&0&-1/4&1&0&-3/4&15\\ \end{array}\tag1 bvZx3x2Z100x103/41/4x2001x3010x501/43/4rhs01515(1)
(2) Substitute phase-2 objective function
b v Z ‾ x 1 x 2 x 3 x 5 r h s Z ‾ 1 3 2 4 0 0 x 3 0 3 / 4 0 1 1 / 4 15 x 2 0 − 1 / 4 1 0 − 3 / 4 15 (2) \begin{array}{c|clr} bv&\overline{Z}&x_1&x_2&x_3&x_5&rhs\\ \hline \overline{Z}&1&3&2&4&0&0\\ \hline x_3&0&3/4&0&1&1/4&15\\ \hline x_2&0&-1/4&1&0&-3/4&15\\ \end{array}\tag2 bvZx3x2Z100x133/41/4x2201x3410x501/43/4rhs01515(2)
(3) Restore proper form
b v Z ‾ x 1 x 2 x 3 x 5 r h s Z ‾ 1 0 0 7 / 3 − 2 / 3 − 80 x 1 0 1 0 4 / 3 1 / 3 20 x 2 0 0 1 1 / 3 − 2 / 3 20 \begin{array}{c|clr} bv&\overline{Z}&x_1&x_2&x_3&x_5&rhs\\ \hline \overline{Z}&1&0&0&7/3&-2/3&-80\\ \hline x_1&0&1&0&4/3&1/3&20\\ \hline x_2&0&0&1&1/3&-2/3&20 \end{array} bvZx1x2Z100x1010x2001x37/34/31/3x52/31/32/3rhs802020

在这里插入图片描述

Q 6

(a) True. We introduce an artificial variable for the constraint with equality relationship to work as slack variable.
(b) False. If any artificial variables is p o s i t i v e ‾ \underline{positive} positive (not equal to zreo) in optimal Big-M tableau, the original LP has no feasible solution.
© True.

在这里插入图片描述
在这里插入图片描述

Q 7

(a) The problem could be reformulated as follows:
m a x Z max Z maxZ
s . t . s.t. s.t.
Z + 2 x 1 + x 2 + 4 x 3 − 3 x 4 = 0 ( 0 ) x 1 + x 2 + 3 x 3 + 2 x 4 + s 1 = 4 ( 1 ) x 1 − x 3 + x 4 − e + x 5 ‾ = − 1 ( 2 ) 2 x 1 + x 2 + s 2 = 2 ( 3 ) x 1 + 2 x 2 + x 3 + 2 x 4 + x 6 ‾ = 2 ( 4 ) Z+2x_1+x_2+4x_3-3x_4=0\qquad(0)\\ x_1+x_2+3x_3+2x_4+s_1=4\qquad(1)\\ x_1-x_3+x_4-e+\overline{x_5}=-1\qquad(2)\\ 2x_1+x_2+s_2=2\qquad(3)\\ x_1+2x_2+x_3+2x_4+\overline{x_6}=2\qquad(4) Z+2x1+x2+4x33x4=0(0)x1+x2+3x3+2x4+s1=4(1)x1x3+x4e+x5=1(2)2x1+x2+s2=2(3)x1+2x2+x3+2x4+x6=2(4)
and x 2 ≥ 0 , x 3 ≥ 0 , x 4 ≥ 0 , x 5 ‾ ≥ 0 , x 6 ‾ ≥ 0 , e ≥ 0 , s 1 ≥ 0 , s 2 ≥ 0 x_2\geq0,x_3\geq0,x_4\geq0,\overline{x_5}\geq0,\overline{x_6}\geq0,e\geq0,s_1\geq0,s_2\geq0 x20,x30,x40,x50,x60,e0,s10,s20

(b)Big M method
Let M → ∞ M\rightarrow\infty M
Z = − 2 x 1 + x 2 − 4 x 3 + 3 x 4 − M x 5 ‾ − M x 6 ‾ Z=-2x_1+x_2-4x_3+3x_4-M\overline{x_5}-M\overline{x_6} Z=2x1+x24x3+3x4Mx5Mx6
New eq.(0)=eq.(0)-Meq.(2)-Meq.(4)
Z + ( 2 − 2 M ) x 1 + ( − 2 M − 2 ) x 2 + 4 x 3 + ( − 3 M − 3 ) x 4 + M e = − M ( 0 ) Z+(2-2M)x_1+(-2M-2)x_2+4x_3+(-3M-3)x_4+Me=-M\qquad(0) Z+(22M)x1+(2M2)x2+4x3+(3M3)x4+Me=M(0)

Iteration 0
b v Z x 1 x 2 x 3 x 4 e x 5 ‾ x 6 ‾ s 1 s 2 r h s Z 1 2 − 2 M − 2 M − 2 4 − 3 M − 3 M 0 0 0 0 − M s 1 0 1 1 3 2 0 0 0 1 0 4 x 5 ‾ 0 1 0 − 1 1 − 1 1 0 0 0 − 1 s 2 0 2 1 0 0 0 0 0 0 1 2 x 6 ‾ 0 1 2 1 2 0 0 1 0 0 2 \begin{array}{c|clr} bv&Z&x_1&x_2&x_3&x_4&e&\overline{x_5}&\overline{x_6}&s_1&s_2&rhs\\ \hline Z&1&2-2M&-2M-2&4&-3M-3&M&0&0&0&0&-M\\ \hline s_1&0&1&1&3&2&0&0&0&1&0&4\\ \hline \overline{x_5}&0&1&0&-1&1&-1&1&0&0&0&-1\\ \hline s_2&0&2&1&0&0&0&0&0&0&1&2\\ \hline\overline{x_6}&0&1&2&1&2&0&0&1&0&0&2\\ \end{array} bvZs1x5s2x6Z10000x122M1121x22M21012x343101x43M32102eM0100x500100x600001s101000s200010rhsM4122
Iteration 1
b v Z x 1 x 2 x 3 x 4 e x 5 ‾ x 6 ‾ s 1 s 2 r h s Z 1 ( 7 − M ) / 2 M + 1 ( 3 M + 11 ) / 2 0 M 0 ( 3 M + 3 ) / 2 0 0 2 M + 3 s 1 0 0 − 1 2 0 0 0 − 1 1 0 2 x 5 ‾ 0 1 / 2 − 1 3 / 2 0 − 1 1 − 1 / 2 0 0 − 2 s 2 0 2 1 0 0 0 0 0 0 1 2 x 4 0 1 / 2 1 1 / 2 1 0 0 1 / 2 0 0 1 \begin{array}{c|clr} bv&Z&x_1&x_2&x_3&x_4&e&\overline{x_5}&\overline{x_6}&s_1&s_2&rhs\\ \hline Z&1&(7-M)/2&M+1&(3M+11)/2&0&M&0&(3M+3)/2&0&0&2M+3\\ \hline s_1&0&0&-1&2&0&0&0&-1&1&0&2\\ \hline \overline{x_5}&0&1/2&-1&3/2&0&-1&1&-1/2&0&0&-2\\ \hline s_2&0&2&1&0&0&0&0&0&0&1&2\\ \hline x_4&0&1/2&1&1/2&1&0&0&1/2&0&0&1 \end{array} bvZs1x5s2x4Z10000x1(7M)/201/221/2x2M+11111x3(3M+11)/223/201/2x400001eM0100x500100x6(3M+3)/211/201/2s101000s200010rhs2M+32221
In the first simplex tableau, the entering variable is x 1 x_1 x1,and the leaving variable is s 2 s_2 s2.
The initial artificial solution is ( x 1 , x 2 , x 3 , x 4 ) = ( 0 , 0 , 0 , 1 ) (x_1,x_2,x_3,x_4)=(0,0,0,1) (x1,x2,x3,x4)=(0,0,0,1)

©

Phase 1:maximize Z = − x 5 ‾ − x 6 ‾ Z=-\overline{x_5}-\overline{x_6} Z=x5x6
Phase 1 problem:
Max Z, s.t.:
x 1 + x 2 + 3 x 3 + 2 x 4 + s 1 = 4 ( 1 ) x 1 − x 3 + x 4 − e + x 5 ‾ = − 1 ( 2 ) 2 x 1 + x 2 + s 2 = 2 ( 3 ) x 1 + 2 x 2 + x 3 + 2 x 4 + x 6 ‾ = 2 ( 4 ) x_1+x_2+3x_3+2x_4+s_1=4\qquad(1)\\ x_1-x_3+x_4-e+\overline{x_5}=-1\qquad(2)\\ 2x_1+x_2+s_2=2\qquad(3)\\ x_1+2x_2+x_3+2x_4+\overline{x_6}=2\qquad(4) x1+x2+3x3+2x4+s1=4(1)x1x3+x4e+x5=1(2)2x1+x2+s2=2(3)x1+2x2+x3+2x4+x6=2(4)

row(0)=eq.(0)-eq.(2)-eq.(4)
row(0): Z − 2 x 1 − 2 x 2 − 3 x 4 + e = − 1 Z-2x_1-2x_2-3x_4+e=-1 Z2x12x23x4+e=1

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值