《概率论》 2.2 概率分布

1. 离散型分布

设随机变量X的可能取值为有限个或可列个,记 X 1 , X 2 , . . . X_1,X_2,... X1,X2,...
则称X为离散型随机变量或X具有离散型分布,并称 p k = P { ( X = x k ) } p_k=P\lbrace(X=x_k)\rbrace pk=P{(X=xk)}    \; (k=1,2…)为X的分布列或概率函数

单点分布:随机变量X满足P(X=c)=1,即X的分布函数F是一个 退 化 分 布 函 数 ‾ \underline{退化分布函数} 退,称X服从单点分布,记 X ∼ S c X\sim S_c XSc
分布列
X c P 1 \begin{array}{c|lcr} X&\text{c}\\ \hline P&{1} \end{array} XPc1

E ( a ξ + b ) = a E ξ + b E(a\xi+b)=aE\xi+b E(aξ+b)=aEξ+b
E ξ = x 1 p 1 + . . . + x n p n + . . . E\xi=x_1p_1+...+x_np_n+... Eξ=x1p1+...+xnpn+...

分布列性质
p k ( k ≥ 1 ) p_k(k\geq1) pk(k1) 是随机变量X的分布列,性质:
(1) 非负性
p k ≤ 0 , k = 1 , 2... p_k\leq0,k=1,2... pk0,k=1,2...
(2) 正则性
∑ k = 1 ∞ p k = 1 \sum^{\infty}_{k=1}{p_k}=1 k=1pk=1
若一数列满足非负性和正则性,其必为某随机变量的分布列

定理
设离散型随机变量X具有分布列
p k = P ( X = x k ) , k = 1 , 2... p_k=P(X=x_k),k=1,2... pk=P(X=xk),k=1,2...
则X的分布函数
F ( x ) = ∑ k : x k < x p k = ∑ k p k ⋅ 1 ( − ∞ , x ] ( x k ) F(x)=\sum_{k:x_k<x}{p_k} =\sum_{k}{p_k}\cdot1_{(-\infty,x]}(x_k) F(x)=k:xk<xpk=kpk1(,x](xk)

约定 ∑ k ∈ ∅ p k = 0 \sum_{k\in\empty}{p_k}=0 kpk=0
D ∈ B ( ∣ R ) D\in B(|R) DB(R),随机变量X是分布列{ p k : k ≥ 1 {p_k:k\geq1} pk:k1}
P ( X ∈ D ) = ∑ k : x k ∈ D p k = ∑ k p k ⋅ 1 D ( x k ) P(X\in D)=\sum_{k:x_k\in D}{p_k}=\sum_{k}{p_k}\cdot1_D(x_k) P(XD)=k:xkDpk=kpk1D(xk)


离散型随机变量的分布函数特征
设F(x)是离散型随机变量X的分布函数,则F(x):

(1)是单调不降的阶梯函数
(2)在其间断点出均右连续
(3)间断点即X的可能取值点
(4)在其间断点处的跳跃高度是对应概率值

设F(x)是离散型随机变量X的分布函数,则X的可能取值点为F的所有间断点 x 1 , x 2 , . . . x_1,x_2,... x1,x2,...,分布列为 P ( X = x k ) = F ( x k ) − F ( x k − 0 ) , k = 1 , 2... P(X=x_k)=F(x_k)-F(x_k-0),k=1,2... P(X=xk)=F(xk)F(xk0)k=1,2...


2.连续型分布

设随机变量X的分布函数F(x),若存在飞斧函数p(x),使得对任意的实数x,
F ( x ) = ∫ − ∞ x p ( t ) d t F(x)=\int _{-\infty}^{x}{p(t)}dt F(x)=xp(t)dt
则称X为连续型随机变量或X具有连续型分布
p(x)为 概 率 密 度 函 数 ‾ \underline{概率密度函数} ,简称密度函数

(1)连续型随机变量的分布函数F(x)为连续函数
(2)对任意实数a,P(x=a)=F(a)-F(a-0)=0
(3)由连续型随机变量定义知,
若x是分布函数F的可导点,则 p ( x ) = d F d x F ( x ) p(x)=\frac{dF}{dx}{F(x)} p(x)=dxdFF(x)
若x是分布函数的不可导点, p ( x ) p(x) p(x)理论上可为任意实数,但为了便利,定义 p ( x ) = 0 p(x)=0 p(x)=0.故概率密度不唯一。

(分布函数的性质) F ( ∞ ) = 1 F(\infty)=1 F()=1

概率密度函数的性质
设p(x)是连续型随机变量X的概率密度函数,p(x)d的性质:

(1)非负性
对任意的x,p(x)>0
(2) 正则性
∫ − ∞ ∞ p ( x ) d x = 1 \int^{\infty}_{-\infty}{p(x)}dx=1 p(x)dx=1
若有一函数满足非负性和正则性,则其必为某一连续型随机变量的概率密度函数

概率密度函数不是概率,若连续型随机变量 X ∼ p ( x ) X\sim p(x) Xp(x) ∵ p ( X ∈ ( x − Δ x / 2 , x + Δ x / 2 ) = ∫ x − Δ x / 2 x + Δ x / 2 p ( t ) d t ≈ p ( x ) Δ x \because p(X\in ( x-\Delta x/2,x+\Delta x/2)=\int_{x-\Delta x/2}^{x+\Delta x/2}p(t)dt\approx p(x)\Delta x p(X(xΔx/2,x+Δx/2)=xΔx/2x+Δx/2p(t)dtp(x)Δx
p(x)在x处的值反映x在x附近取值可能性的大小。
但对离散型随机变量X,若具有分布列{ p k p_k pk},k>1, p k p_k pk表示X取 x k x_k xk 的概率。

设随机变量X的概率密度函数为p(x),且p(x)为偶函数。对任意实数x,p(x)=p(-x),于是对任意a>0,其分布函数F有,F(-a)= 1 2 \frac{1}{2} 21- ∫ 0 a p ( x ) d x \int^{a}_{0}p(x)dx 0ap(x)dx,F(a)+F(-a)=1
特别地,F(0)= 1 2 \frac{1}{2} 21, P(|x| ≤ a \leq a a)=2F(a)-1, P(|x| ≥ a \geq a a)=2(1-F(a))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值