1. 离散型分布
设随机变量X的可能取值为有限个或可列个,记
X
1
,
X
2
,
.
.
.
X_1,X_2,...
X1,X2,...
则称X为离散型随机变量或X具有离散型分布,并称
p
k
=
P
{
(
X
=
x
k
)
}
p_k=P\lbrace(X=x_k)\rbrace
pk=P{(X=xk)}
\;
(k=1,2…)为X的分布列或概率函数
单点分布:随机变量X满足P(X=c)=1,即X的分布函数F是一个 退 化 分 布 函 数 ‾ \underline{退化分布函数} 退化分布函数,称X服从单点分布,记 X ∼ S c X\sim S_c X∼Sc
分布列
X c P 1 \begin{array}{c|lcr} X&\text{c}\\ \hline P&{1} \end{array} XPc1
E ( a ξ + b ) = a E ξ + b E(a\xi+b)=aE\xi+b E(aξ+b)=aEξ+b
E ξ = x 1 p 1 + . . . + x n p n + . . . E\xi=x_1p_1+...+x_np_n+... Eξ=x1p1+...+xnpn+...
分布列性质:
设
p
k
(
k
≥
1
)
p_k(k\geq1)
pk(k≥1) 是随机变量X的分布列,性质:
(1) 非负性
p
k
≤
0
,
k
=
1
,
2...
p_k\leq0,k=1,2...
pk≤0,k=1,2...
(2) 正则性
∑
k
=
1
∞
p
k
=
1
\sum^{\infty}_{k=1}{p_k}=1
∑k=1∞pk=1
若一数列满足非负性和正则性,其必为某随机变量的分布列
定理
设离散型随机变量X具有分布列
p
k
=
P
(
X
=
x
k
)
,
k
=
1
,
2...
p_k=P(X=x_k),k=1,2...
pk=P(X=xk),k=1,2...
则X的分布函数
F
(
x
)
=
∑
k
:
x
k
<
x
p
k
=
∑
k
p
k
⋅
1
(
−
∞
,
x
]
(
x
k
)
F(x)=\sum_{k:x_k<x}{p_k} =\sum_{k}{p_k}\cdot1_{(-\infty,x]}(x_k)
F(x)=k:xk<x∑pk=k∑pk⋅1(−∞,x](xk)
约定
∑
k
∈
∅
p
k
=
0
\sum_{k\in\empty}{p_k}=0
∑k∈∅pk=0
设
D
∈
B
(
∣
R
)
D\in B(|R)
D∈B(∣R),随机变量X是分布列{
p
k
:
k
≥
1
{p_k:k\geq1}
pk:k≥1}
则
P
(
X
∈
D
)
=
∑
k
:
x
k
∈
D
p
k
=
∑
k
p
k
⋅
1
D
(
x
k
)
P(X\in D)=\sum_{k:x_k\in D}{p_k}=\sum_{k}{p_k}\cdot1_D(x_k)
P(X∈D)=∑k:xk∈Dpk=∑kpk⋅1D(xk)
离散型随机变量的分布函数特征
设F(x)是离散型随机变量X的分布函数,则F(x):
(1)是单调不降的阶梯函数
(2)在其间断点出均右连续
(3)间断点即X的可能取值点
(4)在其间断点处的跳跃高度是对应概率值
设F(x)是离散型随机变量X的分布函数,则X的可能取值点为F的所有间断点 x 1 , x 2 , . . . x_1,x_2,... x1,x2,...,分布列为 P ( X = x k ) = F ( x k ) − F ( x k − 0 ) , k = 1 , 2... P(X=x_k)=F(x_k)-F(x_k-0),k=1,2... P(X=xk)=F(xk)−F(xk−0),k=1,2...
2.连续型分布
设随机变量X的分布函数F(x),若存在飞斧函数p(x),使得对任意的实数x,
F
(
x
)
=
∫
−
∞
x
p
(
t
)
d
t
F(x)=\int _{-\infty}^{x}{p(t)}dt
F(x)=∫−∞xp(t)dt
则称X为连续型随机变量或X具有连续型分布
p(x)为
概
率
密
度
函
数
‾
\underline{概率密度函数}
概率密度函数,简称密度函数
(1)连续型随机变量的分布函数F(x)为连续函数
(2)对任意实数a,P(x=a)=F(a)-F(a-0)=0
(3)由连续型随机变量定义知,
若x是分布函数F的可导点,则 p ( x ) = d F d x F ( x ) p(x)=\frac{dF}{dx}{F(x)} p(x)=dxdFF(x)
若x是分布函数的不可导点, p ( x ) p(x) p(x)理论上可为任意实数,但为了便利,定义 p ( x ) = 0 p(x)=0 p(x)=0.故概率密度不唯一。
(分布函数的性质) F ( ∞ ) = 1 F(\infty)=1 F(∞)=1
概率密度函数的性质
设p(x)是连续型随机变量X的概率密度函数,p(x)d的性质:
(1)非负性
对任意的x,p(x)>0
(2) 正则性
∫ − ∞ ∞ p ( x ) d x = 1 \int^{\infty}_{-\infty}{p(x)}dx=1 ∫−∞∞p(x)dx=1
若有一函数满足非负性和正则性,则其必为某一连续型随机变量的概率密度函数
概率密度函数不是概率,若连续型随机变量
X
∼
p
(
x
)
X\sim p(x)
X∼p(x),
∵
p
(
X
∈
(
x
−
Δ
x
/
2
,
x
+
Δ
x
/
2
)
=
∫
x
−
Δ
x
/
2
x
+
Δ
x
/
2
p
(
t
)
d
t
≈
p
(
x
)
Δ
x
\because p(X\in ( x-\Delta x/2,x+\Delta x/2)=\int_{x-\Delta x/2}^{x+\Delta x/2}p(t)dt\approx p(x)\Delta x
∵p(X∈(x−Δx/2,x+Δx/2)=∫x−Δx/2x+Δx/2p(t)dt≈p(x)Δx
p(x)在x处的值反映x在x附近取值可能性的大小。
但对离散型随机变量X,若具有分布列{
p
k
p_k
pk},k>1,
p
k
p_k
pk表示X取
x
k
x_k
xk 的概率。
设随机变量X的概率密度函数为p(x),且p(x)为偶函数。对任意实数x,p(x)=p(-x),于是对任意a>0,其分布函数F有,F(-a)=
1
2
\frac{1}{2}
21-
∫
0
a
p
(
x
)
d
x
\int^{a}_{0}p(x)dx
∫0ap(x)dx,F(a)+F(-a)=1
特别地,F(0)=
1
2
\frac{1}{2}
21, P(|x|
≤
a
\leq a
≤a)=2F(a)-1, P(|x|
≥
a
\geq a
≥a)=2(1-F(a))