🧠 向量数据库、关系型数据库和NoSQL:从定义到大模型应用的深度解析
✨ 引言
随着数据驱动型技术的普及,数据库系统的选择和优化成为决定技术项目成败的关键。传统关系型数据库(RDBMS)、非关系型数据库(NoSQL),以及近年来兴起的向量数据库,各自为特定的数据存储和检索需求提供了解决方案。
特别是在大模型构建和应用中,向量数据库正在迅速崛起,以其在语义检索和相似性搜索上的优越表现,成为了大模型开发者的首选。
主题概览插图
说明: 这张插图展示了关系型数据库(RDBMS)、NoSQL 数据库和向量数据库之间的关系及其关键特性。每个部分通过清晰的图标表示其主要特点,如表格、JSON 文档和高维向量。箭头的连接展示了这些数据库技术在数据存储与检索中的演变路径。
📚 一、数据库的定义与特点
1. 📋 关系型数据库(RDBMS)
- 定义:基于表结构的数据库,通过预定义的模式(Schema)存储数据,支持事务管理和复杂查询。
- 特点:
- 使用 SQL 语言查询。
- 强调数据一致性和完整性。
- 适合结构化数据的存储和管理。
- 代表技术:MySQL、PostgreSQL、Oracle。
2. 📂 非关系型数据库(NoSQL)
- 定义:支持多种非表格化的数据存储模型,如键值对、文档、列族或图结构。
- 特点:
- 灵活的数据模型,适合半结构化和非结构化数据。
- 强调扩展性和分布式架构。
- 牺牲部分一致性以换取性能和可扩展性。
- 代表技术:MongoDB、Cassandra、Redis。
3. 🔍 向量数据库
- 定义:专门用于存储和检索高维向量数据,通常与大模型生成的嵌入(Embedding)结合,支持相似性搜索。
- 特点:
- 高效的相似性搜索,支持距离度量(如余弦相似度、欧几里得距离)。
- 适合处理海量高维数据,如文本、图像和多模态嵌入。
- 支持实时更新与动态扩展。
- 代表技术:Milvus、Pinecone、FAISS。
⚖️ 二、三类数据库的区别与联系
下表总结了关系型数据库、NoSQL 和向量数据库的主要区别和联系:
特性 | 关系型数据库(RDBMS) | 非关系型数据库(NoSQL) | 向量数据库 |
---|---|---|---|
数据模型 |