向量数据库、关系型数据库和NoSQL:从定义到大模型应用的深度解析20241204

🧠 向量数据库、关系型数据库和NoSQL:从定义到大模型应用的深度解析


引言

随着数据驱动型技术的普及,数据库系统的选择和优化成为决定技术项目成败的关键。传统关系型数据库(RDBMS)、非关系型数据库(NoSQL),以及近年来兴起的向量数据库,各自为特定的数据存储和检索需求提供了解决方案。

特别是在大模型构建和应用中,向量数据库正在迅速崛起,以其在语义检索和相似性搜索上的优越表现,成为了大模型开发者的首选。

在这里插入图片描述

主题概览插图

说明: 这张插图展示了关系型数据库(RDBMS)、NoSQL 数据库和向量数据库之间的关系及其关键特性。每个部分通过清晰的图标表示其主要特点,如表格、JSON 文档和高维向量。箭头的连接展示了这些数据库技术在数据存储与检索中的演变路径。


📚 一、数据库的定义与特点

1. 📋 关系型数据库(RDBMS)

  • 定义:基于表结构的数据库,通过预定义的模式(Schema)存储数据,支持事务管理和复杂查询。
  • 特点
    • 使用 SQL 语言查询。
    • 强调数据一致性和完整性。
    • 适合结构化数据的存储和管理。
  • 代表技术:MySQL、PostgreSQL、Oracle。

2. 📂 非关系型数据库(NoSQL)

  • 定义:支持多种非表格化的数据存储模型,如键值对、文档、列族或图结构。
  • 特点
    • 灵活的数据模型,适合半结构化和非结构化数据。
    • 强调扩展性和分布式架构。
    • 牺牲部分一致性以换取性能和可扩展性。
  • 代表技术:MongoDB、Cassandra、Redis。

3. 🔍 向量数据库

  • 定义:专门用于存储和检索高维向量数据,通常与大模型生成的嵌入(Embedding)结合,支持相似性搜索。
  • 特点
    • 高效的相似性搜索,支持距离度量(如余弦相似度、欧几里得距离)。
    • 适合处理海量高维数据,如文本、图像和多模态嵌入。
    • 支持实时更新与动态扩展。
  • 代表技术:Milvus、Pinecone、FAISS。

⚖️ 二、三类数据库的区别与联系

下表总结了关系型数据库、NoSQL 和向量数据库的主要区别和联系:

特性 关系型数据库(RDBMS) 非关系型数据库(NoSQL) 向量数据库
数据模型
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Narutolxy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值