手撕深度学习:从零开始实现LeNet网络

  • LeNet网络结构介绍
  • 计算前向传播
  • Jupyter笔记本代码实现
  • 项目结构代码实现
  • 小结

一、LeNet网络结构介绍

LeNet是由Yann LeCun于1998年设计,是最早的卷积神经网络之一,广泛应用于手写数字识别等任务。LeNet网络主要包含两个卷积层,两个池化层,两个全连接层,以及一个高斯连接层(现在通常用另一个全连接层替代)。这种结构的设计显著减少了网络的参数数量,同时保持了良好的特征提取能力。

二、计算前向传播

前向传播涉及数据通过网络的每一层,并进行一系列线性和非线性运算的过程。LeNet具体的操作包括卷积操作用于特征提取,激活函数(通常是ReLU或Sigmoid)增加非线性,池化层用于下采样,最后通过全连接层生成分类结果。

三、Jupyter ipynb代码实现

在Jupyter笔记本中,我们一步步构建LeNet模型,首先是导入必要的库(如TensorFlow或PyTorch),然后是定义网络结构,加载和预处理数据集(如MNIST),接着是编写训练和测试函数,最后是训练模型并绘制损失和准确率图表。

  1. 网络结构定义
    import torch
    import torch.nn as nn
    import torch.nn.functional as F
    
    
    class LeNet(nn.Module):
        def __init__(self):
            super(LeNet, self).__init__()
            self.conv1 = nn.Conv2d(1, 6, 5, stride=1, padding=2)  # 保持尺寸28x28
            self.pool1 = nn.AvgPool2d(2, 2)  # 池化后尺寸变为14x14
            self.conv2 = nn.Conv2d(6, 16, 5, stride=1, padding=0)  # 尺寸变为10x10, 池化后为5x5
            self.pool2 = nn.AvgPool2d(2, 2)  # 池化后尺寸变为5x5
            self.fc1 = nn.Linear(16 * 5 * 5, 120)
            self.fc2 = nn.Linear(120, 84)
            self.fc3 = nn.Linear(84, 10)
        
        def forward(self, x):
            x = F.relu(self.conv1(x))
            x = self.pool1(x)
            x = F.relu(self.conv2(x))
            x = self.pool2(x)
            x = torch.flatten(x, 1)
            x = F.relu(self.fc1(x))
            x = F.relu(self.fc2(x))
            x = self.fc3(x)
            return x
  2. 测试输入
    # 测试代码
    lenet = LeNet()
    X = torch.rand(size=(1, 1, 28, 28), dtype=torch.float32)
    output = lenet(X)
    print("Final output shape:", output.shape)
  3. 数据预处理
    # 2 数据预处理
    from torchvision import datasets, transforms
    from torch.utils.data import DataLoader
    # 定义数据预处理
    
    # 加载训练集和测试集
    train_set = datasets.MNIST('./data/mnist',
                       download=True,
                       transform=transforms.Compose([
                           transforms.Resize((28, 28)),
                           transforms.ToTensor()]))
    test_set = datasets.MNIST('./data/mnist',
                      train=False,
                      download=True,
                      transform=transforms.Compose([
                          transforms.Resize((28, 28)),
                          transforms.ToTensor()]))
    data_train_loader = DataLoader(train_set, batch_size=256, shuffle=True, num_workers=8)
    data_test_loader = DataLoader(test_set, batch_size=1024, num_workers=8)
  4. 模型加载,loss定义,优化器定义,正向传播,反向传播,训练记录,测试
    # 3 模型加载,loss定义,优化器定义,正向传播,反向传播,训练记录,测试
    import torch.optim as optim
    
    # a. 模型读取
    model = LeNet()
    # b. loss定义
    criterion = nn.CrossEntropyLoss()
    # c. 优化器选择
    optimizer = optim.Adam(model.parameters(), lr=2e-3)
    
    # 训练模型
    def train(epoch):
        model.train()
        for batch_idx, (data, targets) in enumerate(data_train_loader):
            optimizer.zero_grad()
            output = model(data)
            loss = criterion(output, targets)
            loss.backward()
            optimizer.step()
            if batch_idx % 100 == 0:
                print(f'Train Epoch: {epoch} [{batch_idx * len(data)}/{len(data_train_loader.dataset)} ({100. * batch_idx / len(data_train_loader):.0f}%)]\tLoss: {loss.item():.6f}')
    
    
    # 测试模型
    def test():
        model.eval()
        test_loss = 0
        correct = 0
        with torch.no_grad():
            for data, targets in data_test_loader:
                output = model(data)
                test_loss += criterion(output, targets).item()
                pred = output.argmax(dim=1, keepdim=True)
                correct += pred.eq(targets.view_as(pred)).sum().item()
        test_loss /= len(data_test_loader.dataset)
        print(f'\nTest set: Average loss: {test_loss:.4f}, Accuracy: {correct}/{len(data_test_loader.dataset)} ({100. * correct / len(data_test_loader.dataset):.0f}%)')
  5. 开始训练
    for epoch in range(1, 16):
        train(epoch)
        test()
  6. 模型保存
    torch.save(model.state_dict(), './model.pth')

    四、项目结构代码实现

项目代码被组织在不同的文件中,以增强代码的可维护性和可读性:

  • train.py:包含模型训练的代码。
  • lenet.py:包含LeNet模型的定义。
  • test.py:包含测试模型和处理单张图片的代码。
  • data:保存MNIST数据集的目录。
  • others:包含额外的支持文件,如模型权重保存、日志记录等。

  1. train.py文件
    import torch
    import torch.nn as nn
    import torch.nn.functional as F
    from torchvision import datasets, transforms
    from torch.utils.data import DataLoader
    import torch.optim as optim
    from lenet import LeNet
    
    
    # 2 数据预处理
    # 加载训练集和测试集
    train_set = datasets.MNIST('./data/mnist',
                       download=True,
                       transform=transforms.Compose([
                           transforms.Resize((28, 28)),
                           transforms.ToTensor()]))
    test_set = datasets.MNIST('./data/mnist',
                      train=False,
                      download=True,
                      transform=transforms.Compose([
                          transforms.Resize((28, 28)),
                          transforms.ToTensor()]))
    data_train_loader = DataLoader(train_set, batch_size=256, shuffle=True, num_workers=8)
    data_test_loader = DataLoader(test_set, batch_size=1024, num_workers=8)
    
    
    
    
    # a. 模型读取
    model = LeNet()
    # b. loss定义
    criterion = nn.CrossEntropyLoss()
    # c. 优化器选择
    optimizer = optim.Adam(model.parameters(), lr=2e-3)
    
    # 训练模型
    def train(epoch):
        model.train()
        for batch_idx, (data, targets) in enumerate(data_train_loader):
            optimizer.zero_grad()
            output = model(data)
            loss = criterion(output, targets)
            loss.backward()
            optimizer.step()
            if batch_idx % 100 == 0:
                print(f'Train Epoch: {epoch} [{batch_idx * len(data)}/{len(data_train_loader.dataset)} ({100. * batch_idx / len(data_train_loader):.0f}%)]\tLoss: {loss.item():.6f}')
    
    
    # 测试模型
    def test():
        model.eval()
        test_loss = 0
        correct = 0
        with torch.no_grad():
            for data, targets in data_test_loader:
                output = model(data)
                test_loss += criterion(output, targets).item()
                pred = output.argmax(dim=1, keepdim=True)
                correct += pred.eq(targets.view_as(pred)).sum().item()
        test_loss /= len(data_test_loader.dataset)
        print(f'\nTest set: Average loss: {test_loss:.4f}, Accuracy: {correct}/{len(data_test_loader.dataset)} ({100. * correct / len(data_test_loader.dataset):.0f}%)')
    
    
    
    
    if __name__ == '__main__':
    	epoches = 20
    	for epoch in range(epoches):
    		train(epoch)
    		test()
    
    	# Save models
    	torch.save(model.state_dict(), './model.pth')
    	print('Saved PyTorch LeNet State to model.pth')
    

    完整的构建了整个全流程,并对模型训练loss,以及test的acc进行了图像绘制。

  2. test.py可实现单张图片测试,指定测试集测试

    """
    1.导入必要的库。
    2.定义或导入LeNet模型。
    3. 加载训练好的模型权重。
    4. 定义数据转换。
    5. 定义单张图片的测试函数。
    6. 定义测试集评估函数。
    7. 执行测试。
    
    """
    
    import torch
    import torch.nn.functional as F
    from torchvision import datasets, transforms
    from torchvision.transforms import ToPILImage
    from torch.utils.data import DataLoader
    from PIL import Image
    import random
    import matplotlib.pyplot as plt
    from lenet import LeNet  # 确保lenet模块中包含了LeNet的定义
    
    # 设定设备
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    
    # 定义数据转换
    transform = transforms.Compose([
        transforms.Resize((28, 28)),
        transforms.ToTensor()
    ])
    
    # 加载模型
    model = LeNet().to(device)
    model.load_state_dict(torch.load('./model.pth'))
    model.eval()
    
    def visual_random_images(dataset, num_images=10):
        indices = random.sample(range(len(dataset)), num_images)
        images = [dataset[i][0] for i in indices]
        labels = [dataset[i][1] for i in indices]
    
        for idx, (image, label) in enumerate(zip(images, labels)):
            plt.figure()
            plt.imshow(ToPILImage()(image), cmap='gray')
            plt.title(f'Label: {label}')
            plt.savefig(f'./random_image/image_{idx}.png')  # 保存图片
            plt.close()
    
    
    def save_random_images(dataset, num_images=10):
        indices = random.sample(range(len(dataset)), num_images)
        images = [dataset[i][0] for i in indices]
        labels = [dataset[i][1] for i in indices]
    
        for idx, (image, label) in enumerate(zip(images, labels)):
            img = ToPILImage()(image)
            img.save(f'./random_image/random_image_{idx}_label_{label}.png')
    
    def test_single_image(image_path):
        image = Image.open(image_path)
        image = transform(image).unsqueeze(0).to(device)  # 转换并添加batch维度
    
        with torch.no_grad():
            output = model(image)
            predicted = output.argmax(dim=1)
    
        # 显示图像及预测结果
        plt.imshow(ToPILImage()(image.squeeze(0)), cmap='gray')
        plt.title(f'Predicted: {predicted.item()}')
        plt.show()
    
    def evaluate_accuracy(data_loader):
        correct = 0
        total = 0
        with torch.no_grad():
            for data, targets in data_loader:
                data, targets = data.to(device), targets.to(device)
                outputs = model(data)
                _, predicted = torch.max(outputs.data, 1)
                total += targets.size(0)
                correct += (predicted == targets).sum().item()
    
        accuracy = 100 * correct / total
        print(f'Accuracy of the network on the test images: {accuracy:.2f}%')
    
    if __name__ == '__main__':
        
    
        # 评估测试集
        test_set = datasets.MNIST('./data/mnist', train=False, download=True, transform=transform)
        test_loader = DataLoader(test_set, batch_size=1024, shuffle=False)
        evaluate_accuracy(test_loader)
    
        save_random_images(test_set, num_images=10)
    
        # 测试单张图片
        # 保存随机选取的图片
        
        test_single_image('./random_image/random_image_0_label_7.png')  # 替换为实际图片路径
    

五、小结

在这篇博客中,我们详细讲解了如何从理论到实践完整地实现一个LeNet模型。通过逐步介绍每个组成部分的作用和实现,读者可以更好地理解深度学习项目的构建过程。此外,我们也展示了如何将这些知识应用到实际代码和项目结构中,帮助读者构建自己的神经网络项目。

Reference

未提及部分

  1.  详细手撕网络结构
  2.  pytorch自定义卷积、池化、padding、loss计算、优化器对比
  3.  数学定义卷积、池化、padding、loss计算、优化器对比
  4. 以上三点甚至比简单构建整个手撕过程更重要,更重要,更重要
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值