- LeNet网络结构介绍
- 计算前向传播
- Jupyter笔记本代码实现
- 项目结构代码实现
- 小结
一、LeNet网络结构介绍
LeNet是由Yann LeCun于1998年设计,是最早的卷积神经网络之一,广泛应用于手写数字识别等任务。LeNet网络主要包含两个卷积层,两个池化层,两个全连接层,以及一个高斯连接层(现在通常用另一个全连接层替代)。这种结构的设计显著减少了网络的参数数量,同时保持了良好的特征提取能力。
二、计算前向传播
前向传播涉及数据通过网络的每一层,并进行一系列线性和非线性运算的过程。LeNet具体的操作包括卷积操作用于特征提取,激活函数(通常是ReLU或Sigmoid)增加非线性,池化层用于下采样,最后通过全连接层生成分类结果。
三、Jupyter ipynb代码实现
在Jupyter笔记本中,我们一步步构建LeNet模型,首先是导入必要的库(如TensorFlow或PyTorch),然后是定义网络结构,加载和预处理数据集(如MNIST),接着是编写训练和测试函数,最后是训练模型并绘制损失和准确率图表。
- 网络结构定义
import torch import torch.nn as nn import torch.nn.functional as F class LeNet(nn.Module): def __init__(self): super(LeNet, self).__init__() self.conv1 = nn.Conv2d(1, 6, 5, stride=1, padding=2) # 保持尺寸28x28 self.pool1 = nn.AvgPool2d(2, 2) # 池化后尺寸变为14x14 self.conv2 = nn.Conv2d(6, 16, 5, stride=1, padding=0) # 尺寸变为10x10, 池化后为5x5 self.pool2 = nn.AvgPool2d(2, 2) # 池化后尺寸变为5x5 self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = F.relu(self.conv1(x)) x = self.pool1(x) x = F.relu(self.conv2(x)) x = self.pool2(x) x = torch.flatten(x, 1) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x
- 测试输入
# 测试代码 lenet = LeNet() X = torch.rand(size=(1, 1, 28, 28), dtype=torch.float32) output = lenet(X) print("Final output shape:", output.shape)
- 数据预处理
# 2 数据预处理 from torchvision import datasets, transforms from torch.utils.data import DataLoader # 定义数据预处理 # 加载训练集和测试集 train_set = datasets.MNIST('./data/mnist', download=True, transform=transforms.Compose([ transforms.Resize((28, 28)), transforms.ToTensor()])) test_set = datasets.MNIST('./data/mnist', train=False, download=True, transform=transforms.Compose([ transforms.Resize((28, 28)), transforms.ToTensor()])) data_train_loader = DataLoader(train_set, batch_size=256, shuffle=True, num_workers=8) data_test_loader = DataLoader(test_set, batch_size=1024, num_workers=8)
- 模型加载,loss定义,优化器定义,正向传播,反向传播,训练记录,测试
# 3 模型加载,loss定义,优化器定义,正向传播,反向传播,训练记录,测试 import torch.optim as optim # a. 模型读取 model = LeNet() # b. loss定义 criterion = nn.CrossEntropyLoss() # c. 优化器选择 optimizer = optim.Adam(model.parameters(), lr=2e-3) # 训练模型 def train(epoch): model.train() for batch_idx, (data, targets) in enumerate(data_train_loader): optimizer.zero_grad() output = model(data) loss = criterion(output, targets) loss.backward() optimizer.step() if batch_idx % 100 == 0: print(f'Train Epoch: {epoch} [{batch_idx * len(data)}/{len(data_train_loader.dataset)} ({100. * batch_idx / len(data_train_loader):.0f}%)]\tLoss: {loss.item():.6f}') # 测试模型 def test(): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, targets in data_test_loader: output = model(data) test_loss += criterion(output, targets).item() pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(targets.view_as(pred)).sum().item() test_loss /= len(data_test_loader.dataset) print(f'\nTest set: Average loss: {test_loss:.4f}, Accuracy: {correct}/{len(data_test_loader.dataset)} ({100. * correct / len(data_test_loader.dataset):.0f}%)')
- 开始训练
for epoch in range(1, 16): train(epoch) test()
- 模型保存
torch.save(model.state_dict(), './model.pth')
四、项目结构代码实现
项目代码被组织在不同的文件中,以增强代码的可维护性和可读性:
- train.py:包含模型训练的代码。
- lenet.py:包含LeNet模型的定义。
- test.py:包含测试模型和处理单张图片的代码。
- data:保存MNIST数据集的目录。
- others:包含额外的支持文件,如模型权重保存、日志记录等。
- train.py文件
import torch import torch.nn as nn import torch.nn.functional as F from torchvision import datasets, transforms from torch.utils.data import DataLoader import torch.optim as optim from lenet import LeNet # 2 数据预处理 # 加载训练集和测试集 train_set = datasets.MNIST('./data/mnist', download=True, transform=transforms.Compose([ transforms.Resize((28, 28)), transforms.ToTensor()])) test_set = datasets.MNIST('./data/mnist', train=False, download=True, transform=transforms.Compose([ transforms.Resize((28, 28)), transforms.ToTensor()])) data_train_loader = DataLoader(train_set, batch_size=256, shuffle=True, num_workers=8) data_test_loader = DataLoader(test_set, batch_size=1024, num_workers=8) # a. 模型读取 model = LeNet() # b. loss定义 criterion = nn.CrossEntropyLoss() # c. 优化器选择 optimizer = optim.Adam(model.parameters(), lr=2e-3) # 训练模型 def train(epoch): model.train() for batch_idx, (data, targets) in enumerate(data_train_loader): optimizer.zero_grad() output = model(data) loss = criterion(output, targets) loss.backward() optimizer.step() if batch_idx % 100 == 0: print(f'Train Epoch: {epoch} [{batch_idx * len(data)}/{len(data_train_loader.dataset)} ({100. * batch_idx / len(data_train_loader):.0f}%)]\tLoss: {loss.item():.6f}') # 测试模型 def test(): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, targets in data_test_loader: output = model(data) test_loss += criterion(output, targets).item() pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(targets.view_as(pred)).sum().item() test_loss /= len(data_test_loader.dataset) print(f'\nTest set: Average loss: {test_loss:.4f}, Accuracy: {correct}/{len(data_test_loader.dataset)} ({100. * correct / len(data_test_loader.dataset):.0f}%)') if __name__ == '__main__': epoches = 20 for epoch in range(epoches): train(epoch) test() # Save models torch.save(model.state_dict(), './model.pth') print('Saved PyTorch LeNet State to model.pth')
完整的构建了整个全流程,并对模型训练loss,以及test的acc进行了图像绘制。
-
test.py可实现单张图片测试,指定测试集测试
""" 1.导入必要的库。 2.定义或导入LeNet模型。 3. 加载训练好的模型权重。 4. 定义数据转换。 5. 定义单张图片的测试函数。 6. 定义测试集评估函数。 7. 执行测试。 """ import torch import torch.nn.functional as F from torchvision import datasets, transforms from torchvision.transforms import ToPILImage from torch.utils.data import DataLoader from PIL import Image import random import matplotlib.pyplot as plt from lenet import LeNet # 确保lenet模块中包含了LeNet的定义 # 设定设备 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 定义数据转换 transform = transforms.Compose([ transforms.Resize((28, 28)), transforms.ToTensor() ]) # 加载模型 model = LeNet().to(device) model.load_state_dict(torch.load('./model.pth')) model.eval() def visual_random_images(dataset, num_images=10): indices = random.sample(range(len(dataset)), num_images) images = [dataset[i][0] for i in indices] labels = [dataset[i][1] for i in indices] for idx, (image, label) in enumerate(zip(images, labels)): plt.figure() plt.imshow(ToPILImage()(image), cmap='gray') plt.title(f'Label: {label}') plt.savefig(f'./random_image/image_{idx}.png') # 保存图片 plt.close() def save_random_images(dataset, num_images=10): indices = random.sample(range(len(dataset)), num_images) images = [dataset[i][0] for i in indices] labels = [dataset[i][1] for i in indices] for idx, (image, label) in enumerate(zip(images, labels)): img = ToPILImage()(image) img.save(f'./random_image/random_image_{idx}_label_{label}.png') def test_single_image(image_path): image = Image.open(image_path) image = transform(image).unsqueeze(0).to(device) # 转换并添加batch维度 with torch.no_grad(): output = model(image) predicted = output.argmax(dim=1) # 显示图像及预测结果 plt.imshow(ToPILImage()(image.squeeze(0)), cmap='gray') plt.title(f'Predicted: {predicted.item()}') plt.show() def evaluate_accuracy(data_loader): correct = 0 total = 0 with torch.no_grad(): for data, targets in data_loader: data, targets = data.to(device), targets.to(device) outputs = model(data) _, predicted = torch.max(outputs.data, 1) total += targets.size(0) correct += (predicted == targets).sum().item() accuracy = 100 * correct / total print(f'Accuracy of the network on the test images: {accuracy:.2f}%') if __name__ == '__main__': # 评估测试集 test_set = datasets.MNIST('./data/mnist', train=False, download=True, transform=transform) test_loader = DataLoader(test_set, batch_size=1024, shuffle=False) evaluate_accuracy(test_loader) save_random_images(test_set, num_images=10) # 测试单张图片 # 保存随机选取的图片 test_single_image('./random_image/random_image_0_label_7.png') # 替换为实际图片路径
五、小结
在这篇博客中,我们详细讲解了如何从理论到实践完整地实现一个LeNet模型。通过逐步介绍每个组成部分的作用和实现,读者可以更好地理解深度学习项目的构建过程。此外,我们也展示了如何将这些知识应用到实际代码和项目结构中,帮助读者构建自己的神经网络项目。
Reference
- 6.6. 卷积神经网络(LeNet) — 动手学深度学习 2.0.0 documentation
- 手撕神经网络的前向传播、反向传播、梯度下降、参数更新_哔哩哔哩_bilibili
- LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., & others. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.
未提及部分
- 详细手撕网络结构
- pytorch自定义卷积、池化、padding、loss计算、优化器对比
- 数学定义卷积、池化、padding、loss计算、优化器对比
- 以上三点甚至比简单构建整个手撕过程更重要,更重要,更重要