Numpy学习—基本类型和数组创建

本文介绍了NumPy的基础知识,包括其作为Python数值计算扩展的作用,如何安装,以及核心概念——n维度数组对象。详细阐述了如何区分一维、二维和多维数组,并展示了创建和操作数组的各种方法,如常量、数据类型转换、时间类型数据处理。同时,讲解了数组的创建,包括随机数组、全零数组以及从图像转为数组的示例。
摘要由CSDN通过智能技术生成

NUMPy-first day study

一、什么是numpy、

NumPy(Numerical Python)是Python的一种开源的数值计算扩展。这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多(该结构也可以用来表示矩阵(matrix)),支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库

二、如何安装numpy

pip install numpy

三、什么是n维度数组对象

类型为ndarray,区别于list,是python中list的扩展,在进行大多数运算的时候比list更加的高效

四、如何区分一维,二维,多维

判断一个数组是几维,主要看其有几个轴,最简便的方法即是看有几层括号,括号的数量和维度一致。

五、数组的学习

1、常量

(1)、NAN(nan,NaN)是空值,无法比较大小

import numpy as np
np.nan==np.nan 
out:False

(2)、inf表示正无穷大

np.inf>np.nan
out:False#无法比较大小

(3)、e表示自然常数

(4)、pi表示圆周率

2、数据类型

bool,int,float,unicode,datetime64,timedelta等

3、转换数据类型(astype)

1、基本类型的转换

#第一种
arr=np.arange(10)
arr1=arr.astype('float')
#第二种
arr.dtype="float"

ps:需要注意类型之间是否能够转换

2、注意:时间类型的数据转换

import numpy as np
import datetime

dt64=np.datetime64('2022-04-15 08:49:10')
dt=dt64.astype(datetime.datetime)

3、如何得到昨天和明天的日期

yesterday = np.datetime64('today', 'D') - np.timedelta64(1, 'D')
today     = np.datetime64('today', 'D')
tomorrow  = np.datetime64('today', 'D') + np.timedelta64(1, 'D')

4、数组的创建

(1)、一维数组的创建

#第一种
arr=np.arange(10)
#第二种
arr=np.array([0,1,2,3,4])

(2)、多维布尔数组的创建

arr=np.full(shape=(3,3),full_value=3,dtype='bool')
#value大于0的就是TRUE

(3)、全为0的向量数组的创建

arr=np.zero(10)
arr[4]=1
arr
out:[0,0,0,0,1,0,0,0,0,0]

(4)、随机数组的创建

arr=np.random.random((3,3,3))

(5)、创建起点终点步长固定的数组

arr=np.arange(0,20,5)#起点,终点,步长

(6)、导入图像并且转换为数组

from PIL import Image

img=Image.open("文件路径")
arr=np.array(img)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值