Chapter 8 基于实例的学习

第8章介绍了基于实例的学习方法,包括k-近邻算法的多种形式,如离散值和实值函数的逼近,以及距离加权的改进。局部加权回归通过加权线性回归在查询实例附近建立逼近函数。此外,还探讨了径向基函数和基于案例的推理方法。
摘要由CSDN通过智能技术生成

第8章 基于实例的学习

基于实例的学习方法也被称为消极学习法,因为它们只是简单地把训练样例存储起来,而把处理工作延迟到必须分类新的实例时。
基于实例的方法可以为不同的待分类查询实例建立不同的目标函数逼近。
基于实例的方法的不足:一是分类新实例的训练开销可能很大;二是当从存储器中检索相似的训练样例时,它们一般考虑实例的所有属性。

8.1 k-近邻算法

算法假定所有的实例对应于 n 维空间 Rn 中的点。把任意的实例 x 表示为下面的特征向量:

a1(x),a2(x),,an(x)
其中, ar(x) 表示实例 x 的第 r 个属性值。两个实例 xi xj 之间的距离使用欧式距离定义:

d(xi,xj)r=1n[(ar(xi)ar(xj)]2

目标函数值可以是离散值也可以是实值:

8.1.1 逼近离散值函数 f:RnV 的k-近邻算法

训练算法
  对于每个训练样例 x,f(x) ,把这个样例加入列表training_examples
分类算法
  给定一个要分类的查询实例 xq :
    在training_example中选出最靠近 xq k 个实例,并用 x1,,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值