关于单变量高斯分布的一些数学推导

本文详细推导了单变量高斯分布的标准化条件、均值、方差及其最大似然估计。通过概率密度函数的标准化条件得到积分公式,再利用变量替换证明积分结果。接着,对均值和方差进行了推导,说明均值最大似然估计是无偏的,方差的最大似然估计是渐进无偏的。最后,讨论了最大似然估计的无偏性和渐进无偏性。下一篇文章将探讨曲线拟合的数学原理。
摘要由CSDN通过智能技术生成


对 Christopher M. Bishop 大神的 《Pattern Recognition and Machine Learning》书中第一章相关单变量高斯分布的一些公式进行了详细推导。涉及到书中的公式,其编号与原书一致。

单变量高斯分布定义为:

(1.46) N ( x ∣ μ , σ 2 ) = 1 ( 2 π σ 2 ) 1 / 2 exp ⁡ { − 1 2 σ 2 ( x − μ ) 2 } \mathcal{N}(x|\mu,\sigma^2)=\frac{1}{(2\pi\sigma^2)^{1/2}} \exp \left\{ -\frac{1}{2\sigma^2}(x-\mu)^2\right\} \tag{1.46} N(xμ,σ2)=(2πσ2)1/21exp{ 2σ21(xμ)2}(1.46)

1. 满足概率密度函数的标准化条件的推导,即推导式(1.48) :

(1.48) ∫ − ∞ ∞ N ( x ∣ μ , σ 2 ) d x = 1 \int_{-\infty}^\infty \mathcal{N}(x|\mu,\sigma^2) \mathrm{d}x = 1 \tag{1.48} N(xμ,σ2)dx=1(1.48)

∫ − ∞ ∞ N ( x ∣ μ , σ 2 ) d x = ∫ − ∞ ∞ 1 ( 2 π σ 2 ) 1 / 2 exp ⁡ { − 1 2 σ 2 ( x − μ ) 2 } d x = 1 ( 2 π σ 2 ) 1 / 2 ∫ − ∞ ∞ exp ⁡ { − 1 2 σ 2 ( x − μ ) 2 } d x = 1 ( 2 π σ 2 ) 1 / 2 ∫ − ∞ ∞ exp ⁡ { − 1 2 ( x − μ σ ) 2 } d x = 1 ( 2 π σ 2 ) 1 / 2 σ ∫ − ∞ ∞ exp ⁡ { − 1 2 ( x − μ σ ) 2 } d x − μ σ = 1 ( 2 π ) 1 / 2 ∫ − ∞ ∞ exp ⁡ ( − 1 2 t 2 ) d t 这里使用 t = x − μ σ 进行代换  = 1 ( 2 π ) 1 / 2 2 ∫ − ∞ ∞ exp ⁡ [ − ( t 2 ) 2 ] d t 2 = 1 π ∫ − ∞ ∞ exp ⁡ ( − z 2 ) d z = 1 \begin{aligned} \int_{-\infty}^\infty \mathcal{N}(x|\mu,\sigma^2) \mathrm{d}x &= \int_{-\infty}^\infty \frac{1}{(2 \pi \sigma^2)^{1/2}} \exp \left\{ -\frac{1}{2\sigma^2}(x-\mu)^2 \right\} \mathrm{d}x \\ &= \frac{1}{(2 \pi \sigma^2)^{1/2}} \int_{-\infty}^\infty \exp \left\{ -\frac{1}{2\sigma^2}(x-\mu)^2 \right\} \mathrm{d}x \\ &= \frac{1}{(2 \pi \sigma^2)^{1/2}} \int_{-\infty}^\infty \exp \left\{ -\frac{1}{2}(\frac{x-\mu}{\sigma})^2 \right\} \mathrm{d}x \\ &= \frac{1}{(2 \pi \sigma^2)^{1/2}} \sigma \int_{-\infty}^\infty \exp \left\{ -\frac{1}{2}(\frac{x-\mu}{\sigma})^2 \right\} \mathrm{d}\frac{x-\mu}{\sigma} \\ &= \frac{1}{(2 \pi )^{1/2}}\int_{-\infty}^\infty \exp \left( -\frac{1}{2}t^2 \right) \mathrm{d}t \quad \text{这里使用$t=\frac{x-\mu}{\sigma}$进行代换 }\\ &= \frac{1}{(2 \pi )^{1/2}} \sqrt{2} \int_{-\infty}^\infty \exp \left[ -\left(\frac{t}{\sqrt{2}}\right)^2 \right] \mathrm{d}\frac{t}{\sqrt{2}} \\ &= \frac{1}{\sqrt{\pi}} \int_{-\infty}^\infty \exp (-z^2 ) \mathrm{d}z \\ &= 1 \end{aligned} N(xμ,σ2)dx=(2πσ2)1/21exp{ 2σ21(xμ)2}dx=(2πσ2)1/21exp{ 2σ21(xμ)2}dx=(2πσ2)1/21exp{ 21(σxμ)2}dx=(2πσ2)1/21σexp{ 21(σxμ)2}dσxμ=(2π)1/21exp(21t2)dt这里使用t=σxμ进行代换 =(2π)1/212 exp[(2 t)2]d2 t=π 1exp(z2)dz=1

注:关于 ∫ − ∞ ∞ e − x 2 d x = π \int_{-\infty}^{\infty} e^{-x^2} \mathrm{d} x = \sqrt{\pi} ex2dx=π 的证明

I = ∫ − ∞ ∞ exp ⁡ ( − x 2 ) d x I = \int_{-\infty}^\infty \exp (-x^2 ) \mathrm{d}x I=exp(x2)dx

则有

I 2 = ∫ − ∞ ∞ exp ⁡ ( − x 2 ) d x ∫ − ∞ ∞ exp ⁡ ( − y 2 ) d y = ∫ − ∞ ∞ ∫ − ∞ ∞ exp ⁡ ( − x 2 − y 2 ) d x d y \begin{aligned} I^2 &= \int_{-\infty}^\infty \exp (-x^2 ) \mathrm{d}x \int_{-\infty}^\infty \exp (-y^2 ) \mathrm{d}y\\ &=\int_{-\infty}^\infty\int_{-\infty}^\infty \exp (-x^2-y^2 )\mathrm{d}x\mathrm{d}y \end{aligned} I2=exp(x2)dxexp(y2)dy=exp(x2y2)dxdy

又令 x = r cos ⁡ θ x=r\cos\theta x=rcosθ y = r sin ⁡ θ y=r\sin\theta y=rsinθ ,则有

I 2 = ∫ − ∞ ∞ ∫ − ∞ ∞ exp ⁡ ( − x 2 − y 2 ) d x d y = ∫ 0 2 π ∫ 0 ∞ exp ⁡ ( − r 2 ) r d r d θ = ∫ 0 2 π d θ ∫ 0 ∞ exp ⁡ ( − r 2 ) r d r = − π ∫ 0 ∞ exp ⁡ ( − r 2 ) d ( − r 2 ) = − π [ exp ⁡ ( − r 2 ) ] 0 ∞ = π \begin{aligned} I^2 &=\int_{-\infty}^\infty\int_{-\infty}^\infty \exp (-x^2-y^2 )\mathrm{d}x\mathrm{d}y \\ &= \int_0^{2\pi}\int_0^\infty \exp (-r^2)r\mathrm{d}r\mathrm{d}\theta \\ &= \int_0^{2\pi} \mathrm{d}\theta \int_0^\infty \exp (-r^2)r\mathrm{d}r \\ &= -\pi \int_0^\infty \exp (-r^2)\mathrm{d}(-r^2)\\ &= -\pi \left[ \exp (-r^2) \right]_0^{\infty}\\ &= \pi \end{aligned} I2=exp(x2y2)dxdy=02π0exp(r2)rdrdθ=02πdθ0exp(r2)rdr=π0exp(r2)d(r2)=π

  • 3
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值