自编码变分贝叶斯

自编码变分贝叶斯

标签(空格分隔): 机器学习


深度解读Diederik P. Kingma和Max Welling的论文 Auto-encoding variational bayes1,对中间涉及的公式进行了详尽的推导。最后给出了变分自编码器的Tensorflow示例代码。


0. 符号

数据点: x , x(i)
数据集: X={ x(i)}Ni=1 ,满足 i.i.d 条件
隐变量: z , z(i)
生成模型参数: θ
变分参数: ϕ
噪声变量: ϵ

1. 问题背景

假设数据集 X 是由未观测到的连续随机变量 z 的某个随机过程生成的。该过程分为两个步骤:

  • 第一步:从某个先验分布 pθ(z) 生成 z(i)
  • 第二步:从某个条件分布 pθ(x|z) 生成 x(i)

其中,先验 pθ(z) 和似然 pθ(x|z) 分别来自参数分布族 pθ(z) pθ(x|z) ,且这两个参数分布族的概率密度函数关于 θ z 几乎处处可微。
然而,真实参数 θ 和隐变量 z(i) 均是未知的。
上述这两个步骤分别相当于“编码”和“解码”,这应该就是称之为“自编码变分贝叶斯”的原因吧。
一个自然的想法是用最大似然法来求解未知的参数,即最大化边际似然。然而现实的情况是
1. 直接由等式 pθ(x)=pθ(x|z)pθ(z)dz 来估计边际似然是不可能的;
2. 真实后验 pθ(z|x)=pθ(x|z)pθ(z)/pθ(x) 同样是难以估计的。
因此,只能从另外的途径来解决这个问题。

2. 变分下界

引入识别模型(recognition model) qϕ(z|x) 来近似真实后验分布 pθ(z|x) ,这相当于一个概率编码器。
用KL散度来衡量 qϕ(z|x) pθ(z|x) 的距离:

DKL[qϕ(z|x)pθ(z|x)]=qϕ(z|x)qϕ(z|x)logqϕ(z|x)pθ(z|x)dz=Eqϕ(z|x)[logqϕ(z|x)logpθ(z|x)]=Eqϕ(z|x)[logqϕ(z|x)logpθ(x,z)pθ(x)]=Eqϕ(z|x)[logqϕ(z|x)logpθ(x,z)]+logpθ(x)

L(θ,ϕ;x)=Eqϕ(z|x)[logqϕ(z|x)+logpθ(x,z)](1)
,则有
logpθ(x)=DKL[qϕ(z|x)pθ(x|z)]+L(θ,ϕ;x)
因为 DKL[]0 ,所以
logpθ(x)L(θ,ϕ;x)

L(θ,ϕ;x) 称为边际似然 logpθ(x) 变分下界(variational lower bound)。
现在,最大化边际似然的问题可以转化为最大化其变分下界的问题。
L(θ,ϕ;x)=Eqϕ(z|x)[logqϕ(z|x)+logpθ(x,z)]=Eqϕ(z|x)[logqϕ(z|x)+logpθ(x|z)pθ(z)]=Eqϕ(z|x)[logqϕ(z|x)+logp
  • 10
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 6
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值