看了论坛里很多大哥得解决方法,我自行调整了以下可行得代码。因为大佬们发出来得还有些tf不兼容得情况,我就不列举了。
import tensorflow as tf
import keras
config = tf.compat.v1.ConfigProto(allow_soft_placement=True)
config.gpu_options.per_process_gpu_memory_fraction = 0.3
tf.compat.v1.keras.backend.set_session(tf.compat.v1.Session(config=config))
其实这个得问题本质应该是显存不够(参照这位大佬得说法)。
实际上我这样改了以后还是报错,后来发现我之前还在跑另一个网络,把显存占得差不多了。
把那个shutdown以后就可以成功运行了。
所以……在添加以上代码之前你也许可以先试试把显存腾出来给这个模型。