线性代数:矩阵的四子大子空间 之 “零空间”

正文### 1、一个齐次线性方程组的所有解,形成一个向量空间

对于一个齐次线性方程组 A x = O Ax= O Ax=O来说,它的所有的解中每一解都是向量,那么把这些向量(齐次线性方程组的解)集合在一起形成一个空间,其实这个空间是一个向量空间

这个结论可以证明如下:
对于一个齐次线性方程组 A x = O Ax= O Ax=O,它一定有解,因为至少会存在一个零解,所以它的所有解形成的空间不可能为空。

C a s e   1 Case \ 1 Case 1 当这个齐次线性方程组只有唯一零解 的时候,意味着它的解形成的空间只有一个零向量,此时这个空间的维度为 0 0 0,空间内向量的加法和数量乘法满足封闭性,是一个向量空间,很容易得证。

C a s e   2 Case \ 2 Case 2当这个齐次线性方程组有无数解 的时候,求证它的解形成的空间是向量空间:
假设这个齐次线性系统的系数矩阵 A A A是一个 m ∗ n m*n mn的矩阵,那么它的每个解都是一个 n n n维向量(有序实数元组)。如果这些解形成的空间是向量空间,则一定是 n n n维空间(   欧几里得空间     R n \color {darkred} {\small \textbf{ 欧几里得空间}} \ \ \ R^{n}  欧几里得空间   Rn是向量空间)的子空间。

所以当证明齐次线性方程组的解形成的空间是 n n n维欧几里得空间的子空间,就说明它是一个向量空间。
只需证明这个空间对向量加法和数量乘法封闭 \color {darkred} {只需证明这个空间对向量加法和数量乘法封闭} 只需证明这个空间对向量加法和数量乘法封闭

(1)证明空间对向量加法封闭
假设向量 u ⃗ \vec u u v ⃗ \vec v v 是齐次线性方程组 A x = O Ax= O Ax=O的两个解
就有 A ⋅ u ⃗ = O ,   A ⋅ v ⃗ = O → A ⋅ u ⃗ + A ⋅ v ⃗ = O A \cdot \vec u = O, \ A \cdot \vec v = O \to A \cdot \vec u + A \cdot \vec v = O Au =O, Av =OAu +Av =O
进而可得 A ⋅ ( u ⃗ + v ⃗ ) = O A \cdot (\vec u + \vec v) = O A(u +v )=O
上式子意味着两向量 u ⃗ \vec u u v ⃗ \vec v v 的和 ( u ⃗ + v ⃗ ) (\vec u + \vec v) (u +v )也是这个齐次线性方程组的;
因此对于齐次线性方程组的解形成的空间内任意取两个向量 u ⃗ \vec u u v ⃗ \vec v v u ⃗ + v ⃗ \vec u + \vec v u +v 还是在这个空间内,所以该空间对向量加法封闭

(2)证明空间对向量的数量乘法封闭
假设向量 u ⃗ \vec u u 是齐次线性方程组 A x = O Ax= O Ax=O的一个解
就有 A ⋅ u ⃗ = O A \cdot \vec u = O Au =O, 这个等式两边同乘以一个实数 k k k,可得 k ⋅ A ⋅ ( u ⃗ + v ⃗ ) = k ⋅ O = O k \cdot A \cdot (\vec u + \vec v) = k \cdot O = O kA(u +v )=kO=O
改写后可得 A ⋅ ( k u ⃗ ) = O A \cdot (k \vec u) = O A(ku )=O
上式子意味着向量 k u ⃗ k\vec u ku 也是这个齐次线性方程组的;
因此对于齐次线性方程组的解形成的空间内任意取一个向量 u ⃗ \vec u u ,那么这个 u ⃗ \vec u u 乘以任何一个实数 k k k,结果 k u ⃗ k\vec u ku 还是在这个齐次线性方程组的解形成的空间内,所以该空间对数量乘法封闭。

>>综上,一个齐次线性方程组的所有解,形成一个向量空间得证


2、矩阵的零空间

零空间 \color{red} { 零空间} 零空间:一个齐次线性方程组的所有解,形成一个向量空间,称这个空间为" 零空间 ( N u l l   S p a c e ) \color{red} {\small 零空间 (Null \ Space)} 零空间(Null Space)"。

对于一个矩阵 A A A来说,它的零空间就是以 A A A为系数矩阵的齐次线性方程组 A x = 0 Ax=0 Ax=0中,这个线性系统所有的解 x x x组成的空间就是矩阵 A A A零空间

零空间 \color{red} { 零空间} 零空间是矩阵的一个特殊的子空间,矩阵的零空间相比矩阵的行空间和列列空间要更加抽象,因为对于一个矩阵的行空间和列空间,我们可以直观的看到生成它们的就是这个矩阵的行向量和列向量,然后因为这些行向量和列向量可能线性相关,所以往往需要通过特殊的计算手段(对矩阵进行高斯消元求算矩阵的秩)来获得行空间和列空间的具体维度,进而能找到空间的一组基。相比之下,生成一个矩阵的零空间的向量,需要通过求解齐次线性方程组 A x = 0 Ax=0 Ax=0来获取。

对零空间的一些理解

对于线性系统 A x = O Ax=O Ax=O,所有的 x x x组成的空间是零空间。

  • 如果把矩阵看成是向量的转换函数,那么对于等式 A x = O Ax=O Ax=O,其中系数矩阵A就可以看成是一个转换函数,零空间是一个集合,集合内的所有向量在A的变换下,都可以被映射到零点!

  • 如果把矩阵看成是空间,那么就有零空间内任意向量和矩阵 A A A的行向量的点乘结果为0!
    进一步推广,因为矩阵 A A A的行空间内的任意向量都由矩阵的行向量的线性组合所表示(如 w ⃗ = k 1 u ⃗ + k 2 v ⃗ \vec w = k_1 \vec u + k_2 \vec v w =k1u +k2v ),而零空间内任意向量和矩阵 A A A的行向量的点乘结果为 0 0 0,就有 x ⃗ ⋅ w ⃗ = k 1 u ⃗ ⋅ x ⃗ + k 2 v ⃗ ⋅ x ⃗ = 0 \vec x \cdot \vec w = k_1 \vec u \cdot \vec x + k_2 \vec v \cdot \vec x = 0 x w =k1u x +k2v x =0,所以可以得出结论"对于零空间内的任意向量,和矩阵 A A A的行空间的任意向量的点乘结果为 0 0 0" 这个结论其实表面,零空间内的所有向量,和矩阵 A 的行空间中的所有向量是垂直 ( 正交 ) 的。 → \color {#0088b9} {\small {这个结论其实表面,零空间内的所有向量,和矩阵A的行空间中的所有向量是垂直(正交)的。}} \to 这个结论其实表面,零空间内的所有向量,和矩阵A的行空间中的所有向量是垂直(正交)的。 矩阵A的零空间与矩阵A的行空间正交

三维空间中二维空间 ( 平面 ) 和一维空间 ( L i n e ) 的正交情况 \large 三维空间中二维空间(平面)和一维空间(Line)的正交情况 三维空间中二维空间(平面)和一维空间(Line)的正交情况

如果是对于两个平面(二维欧式空间),它们在三维空间内是不可能正交的,它们只可能在四维空间中出现正交。


总结

矩阵 A A A的零空间
A A A看作是系统: A A A的零空间,就是 A x = 0 Ax=0 Ax=0中,所有x组成的空间。
A A A看作是函数(变换): A A A的零空间,所有被 A A A变化为 0 0 0点的所有向量组成的空间。
A A A看作是空间: A A A的零空间,是和 A A A的行空间正交的向量空间。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

倪桦

有帮助的话请杯咖啡吧,谢谢!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值