【线性代数】【二】2.4 矩阵的零空间


前言

本文我们将重点关注 A x = 0 \bm{A}\bm{x}=\bm{0} Ax=0的解集,并说明它构成一个向量空间,即零空间。


一、零空间

在上文中,我们分析了 A x = b \bm{A}\bm{x}=\bm{b} Ax=b的解,那么零向量自然也包括在内。略有特殊的地方在于,零向量属于任何列空间,所以该方程组必然有一个平凡解 x = 0 \bm{x}=\bm{0} x=0。对于列空间维数等于列向量维数的矩阵而言,这个解也就成立唯一解。

现在,我们说明,方程组 A x = 0 \bm{A}\bm{x}=\bm{0} Ax=0的解集,构成一个向量空间,称之为矩阵的零空间,记作 N ( A ) N(\bm{A}) N(A)。由于该解集是向量空间的子集,且包含零向量,因此我们只需要验证其满足加法数乘的封闭性即可:

对于 ∀ x i ∈ N ( A ) , ∀ a i ∈ R \forall \bm{x}_i\in N(A),\forall a_i\in R xiN(A),aiR,只需证 ∑ i a i x i ∈ N ( A ) \sum_ia_i\bm{x}_i\in N(A) iaixiN(A)即可。
   ⟺    ∑ i a i x i \iff \sum_ia_i\bm{x}_i iaixi A x = 0 \bm{A}\bm{x}=\bm{0} Ax=0的解。
   ⟺    ∑ i a i A x i = ∑ i a i 0 = 0 \iff \sum_ia_i\bm{A}\bm{x}_i= \sum_ia_i\bm{0}=\bm{0} iaiAxi=iai0=0

二、零空间的维度

既然零空间也是空间,那么它的维度是多少呢?与矩阵 A \bm{A} A又会有什么关系呢?

首先一个简单的情况,即当矩阵的列空间维数等于列向量维数时,方程组只有唯一的零向量解,此时零空间只有一个零向量,维度为0。

然后我们考虑矩阵列空间维数小于列向量维数时,以如下矩阵为例:

A = ( 1 0 1 0 1 1 0 0 0 ) \mathbf{A} = \left( \begin{array}{ccc} 1 & 0 &1\\ 0&1&1\\ 0&0&0\\ \end{array} \right) A= 100010110

类似于本系列笔记2.3中的操作,我们容易得到得到 x = [ − k , − k , k ] \bm{x}=[-k,-k,k] x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值