参考文章:
https://www.cnblogs.com/graphics/archive/2010/08/05/1793393.html
https://blog.codingnow.com/2018/11/float_precision_problem.html#comment-47738
https://www.zhihu.com/question/26022206
重心法:
三角形的三个点在同一个平面上,如果选中其中一个点,其他两个点不过是相对该点的位移而已,比如选择点A作为起点,那么点B相当于在AB方向移动一段距离得到,而点C相当于在AC方向移动一段距离得到。
所以对于平面内任意一点,都可以由如下方程来表示
P = A + u * (C – A) + v * (B - A) // 方程1
如果系数u或v为负值,那么相当于朝相反的方向移动,即BA或CA方向。那么如果想让P位于三角形ABC内部,u和v必须满足什么条件呢?有如下三个条件
u >= 0
v >= 0
u + v <= 1
几个边界情况,当u = 0且v = 0时,就是点A,当u = 0,v = 1时,就是点B,而当u = 1, v = 0时,就是点C
整理方程1得到P – A = u(C - A) + v(B - A)
令v0 = C – A, v1 = B – A, v2 = P – A,则v2 = u * v0 + v * v1,现在是一个方程,两个未知数,无法解出u和v,将等式两边分别点乘v0和v1的到两个等式
(v2) • v0 = (u * v0 + v * v1) • v0
(v2) • v1 = (u * v0 + v * v1) • v1
注意到这里u和v是数,而v0,v1和v2是向量,所以可以将点积展开得到下面的式子。
v2 • v0 = u * (v0 • v0) + v * (v1 • v0) // 式1
v2 • v1 = u * (v0 • v1) + v * (v1• v1) // 式2
解这个方程得到
u = ((v1•v1)(v2•v0)-(v1•v0)(v2•v1)) / ((v0•v0)(v1•v1) - (v0•v1)(v1•v0))
v = ((v0•v0)(v2•v1)-(v0•v1)(v2•v0)) / ((v0•v0)(v1•v1) - (v0•v1)(v1•v0))
代码如下:
main.cpp
#include <stdio.h>
#define float double
static float dtVdot2D(const float v0[2], const float v1[2])
{
return v0[0] * v1[0] + v0[1] * v1[1];
}
static float *dtVsub(float p[2], const float v0[2], const float v1[2])
{
p[0] = v0[0] - v1[0];
p[1] = v0[1] - v1[1];
return p;
}
static int dtClosestHeightPointTriangle(
const float p[2], const float a[2], const float b[2], const float c[2], float *h)
{
float v0[2], v1[2], v2[2];
dtVsub(v0, c,a);
dtVsub(v1, b,a);
dtVsub(v2, p,a);
float dot00 = dtVdot2D(v0, v0);
float dot01 = dtVdot2D(v0, v1);
float dot02 = dtVdot2D(v0, v2);
float dot11 = dtVdot2D(v1, v1);
float dot12 = dtVdot2D(v1, v2);
// Compute barycentric coordinates
float InvDenom = 1.0f / (dot00 * dot11 - dot01 * dot01);
float u = (dot11 * dot02 - dot01 * dot12) * InvDenom;
float v = (dot00 * dot12 - dot01 * dot02) * InvDenom;
// The (sloppy) epsilon is needed to allow to get height of points which
// are interpolated along the edges of the triangles.
float EPS = 1e-4f;
// If point lies inside the triangle, return interpolated ycoord.
if (u >= -EPS && v >= -EPS && (u+v) <= 1+EPS) {
*h = a[1] + (v0[1]*u + v1[1]*v);
return 1;
}
return 0;
}
/*
static int dtClosestHeightPointTriangle(
const float p[2], const float a[2], const float b[2],const float c[2], float *h)
{
float v0[2], v1[2], v2[2];
dtVsub(v0, c,a);
dtVsub(v1, b,a);
dtVsub(v2, p,a);
float Denom = v0[0] * v1[2] - v0[2] * v1[0];
float u = v1[2] * v2[0] - v1[0] * v2[2];
float v = v0[0] * v2[2] - v0[2] * v2[0];
if (Denom < 0) {
Denom = -Denom;
u = -u;
v = -v;
}
float EPS = - 1e-4f * Denom;
if (u >= EPS && v >= EPS && (u+v) <= Denom - EPS) {
*h = a[1] + (v0[1]*u + v1[1]*v) / Denom;
return 1;
}
return 0;
}
*/
int main()
{
float a[2] = {261.137939, 8.13000488};
float b[2] = {73.6379318, 8.13000488};
float c[2] = {76.9379349, 10.2300053};
float p[2] = {74.4069519, 8.61938190};
float h;
int r = dtClosestHeightPointTriangle(p, a, b, c, &h);
printf("%d %f\n", r, h);
return 0;
}
运行结果如下:
单精度与双精度是什么意思,有什么区别:
精度优化:
我认为问题出在 dot00 * dot11 - dot01 * dot01 这样的运算上。dot00 点乘已经是单个量的平方,在测试数据中,大约这个量会是 261 - 73 = 188 ,小数点前大约是 8bit 的信息含量,如果我们计算 dot00 * dot11 ,差不多会得到一个这个量的 4 次方的结果,也就是 28bit ~ 32bit 之间。
但是 float 本身的有效精度才 23bit ,对一个 2^32 的数字做加减法,本身的误差就可能在 2 ~ 2^9 左右,这个误差是相当巨大的。
这段程序一个明显可以改进的地方是把乘 InvDenom 从 u v 中去掉,但 Denom 看起来可能是负数,需要增加符号判断。那么代码应该写成:
float Denom = (dot00 * dot11 - dot01 * dot01);
float u = (dot11 * dot02 - dot01 * dot12);
float v = (dot00 * dot12 - dot01 * dot02);
if (Denom < 0) {
Denom = -Denom;
u = -u;
v = -v;
}
float EPS = 1e-4f * Denom ;
// If point lies inside the triangle, return interpolated ycoord.
if (u >= -EPS && v >= -EPS && (u+v) <= Denom+EPS) {
*h = a[1] + (v0[1]*u + v1[1]*v) / Denom;
return 1;
}
光这样写还是不够,其实我们应该进一步把 dot00 * dot11 - dot01 * dot01 展开为 (v0[0] * v1[1] - v0[1] * v1[0]) * (v0[0] * v1[1] - v1[0] * v0[1]) 。这样,就不会在四次方的基础上再做加减法,而是在二次方的基础上先做加减,再做乘法。这样就最大化的保持了精度。
由于简化过后,发现 Denom 是个平方数,一定为正,所以可以去掉符号判断。我优化过的函数是这样的:
static int
dtClosestHeightPointTriangle(const float p[3], const float a[3], const float b[3],const float c[3], float *h) {
float v0[3], v1[3], v2[3];
dtVsub(v0, c,a);
dtVsub(v1, b,a);
dtVsub(v2, p,a);
float Denom = (v0[0] * v1[2] - v0[2] * v1[0]) * (v0[0] * v1[2] - v1[0] * v0[2]);
float u = (v1[0] * v2[2] - v1[2] * v2[0]) * (v1[0] * v0[2] - v0[0] * v1[2]);
float v = (v0[0] * v2[2] - v0[2] * v2[0]) * (v0[0] * v1[2] - v1[0] * v0[2]);
float EPS = - 1e-4f * Denom;
if (u >= EPS && v >= EPS && (u+v) <= Denom - EPS) {
*h = a[1] + (v0[1]*u + v1[1]*v) / Denom;
return 1;
}
return 0;
}
由于 u,v,denom 都有共同的项 (v0[0] * v1[2] - v1[0] * v0[2]) 可以约掉,能进一步保留精度。但需要处理一下符号问题。所以最终版本是这样的:
static int
dtClosestHeightPointTriangle(const float p[3], const float a[3], const float b[3],const float c[3], float *h) {
float v0[3], v1[3], v2[3];
dtVsub(v0, c,a);
dtVsub(v1, b,a);
dtVsub(v2, p,a);
float Denom = v0[0] * v1[2] - v0[2] * v1[0];
float u = v1[2] * v2[0] - v1[0] * v2[2];
float v = v0[0] * v2[2] - v0[2] * v2[0];
if (Denom < 0) {
Denom = -Denom;
u = -u;
v = -v;
}
float EPS = - 1e-4f * Denom;
if (u >= EPS && v >= EPS && (u+v) <= Denom - EPS) {
*h = a[1] + (v0[1]*u + v1[1]*v) / Denom;
return 1;
}
return 0;
}
最后这个优化版本即为代码中的注释部分。