zoj-3658-Simple Function

Simple Function

Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u

Description
Knowing that x can be any real number that x 2 + Dx + E ≠ 0. Now, given the following function:
这里写图片描述

What is the range of y?

Input
The first line contains a single integer T (T ≤ 10000), indicating that there are T cases below.
Each case contains five integers in a single line which are values of A, B, C, D and E (-100 ≤ A, B, C, D, E ≤ 100).

Output
For each case, output the range of y in the form of standard interval expression like in a single line.
The expression is made up by one interval or union of several disjoint intervals.
Each interval is one of the following four forms: “(a, b)”, “(a, b]”, “[a, b)”, “[a, b]”(there is a single space between ‘,’ and ‘b’), where a, b are real numbers rounded to 4 decimal places, or “-INF” or “INF” if the value is negative infinity or positive infinity.
If the expression is made up by several disjoint intervals, put the letter ‘U’ between adjacent intervals. There should be a single space between ‘U’ and nearby intervals.
In order to make the expression unique, the expression should contain as minimum of intervals as possible and intervals should be listed in increasing order.
See sample output for more detail.

Sample Input

5
1 1 1 2 3
0 1 0 1 -10
-3 -1 0 -1 -1
0 0 0 0 0
1 3 0 2 0

Sample Output

     [0.3170, 1.1830]

(-INF, INF)
(-INF, -1.8944] U [-0.1056, INF)
[0.0000, 0.0000]
(-INF, 1.0000) U (1.0000, 1.5000) U (1.5000, INF)

题目大意:给一个式子,让你求这个式子的值域。

思路:按照高中的求解思路不停的分类讨论,首先先把分子的二次项消除掉,然后分子就变成了一次项的,然后对分子中一次向系数和常数进行正负零讨论即可,代码不难,关键在于细心。

#include <iostream>
#include <cstdio>
#include <cmath>
#include <vector>
#include <cstring>
#include <algorithm>
#include <string>
#include <set>
#include <functional>
#include <numeric>
#include <sstream>
#include <stack>
#include <map>
#include <queue>
#include<iomanip>
using namespace std;
#define ll long long
int main()
{
    int t;
    cin>>t;
    while(t--)
    {
        double a,b,c,d,e,aa,bb,cc,bbb,ccc,t,midd;
        scanf("%lf%lf%lf%lf%lf",&a,&b,&c,&d,&e);
        aa=a;
        bb=b-a*d;
        cc=c-a*e;
        if(bb==0)
        {
            if(cc==0)
                printf("[%.4f, %.4f]\n",a,a);
            else if(cc<0)
            {
                midd=e-d*d/4;
                if(midd>0)
                printf("[%.4f, %.4f)\n",cc/midd+a,a);        
printf("(-INF, %.4f) U [%.4f, INF)\n",a,cc/midd+a);         
                else 
                printf("(-INF, %.4f)\n",a); 
            }
            else
            {
                midd=e-d*d/4;
printf("(%.4f, %.4f]\n",a,cc/midd+a);
                else if(midd<0)
                printf("(-INF, %.4f] U (%.4f, INF)\n",cc/midd+a,a);
printf("(%.4f, INF)\n",a);
            }
        }
        else
        {
            double x1,x2,y,t1,t2;
            x1=-cc/bb;
            if(x1*x1+d*x1+e==0)
            {
                x2=-d-x1;
                if(x1==x2)
                printf("(-INF, %.4f) U (%.4f, INF)\n",a,a);
                else
                {
                    y=bb/(x1-x2);
printf("(-INF, %.4f) U (%.4f, %.4f) U (%.4f, INF)\n",a,a,a+y,a+y);
                    else 
                    printf("(-INF, %.4f) U (%.4f, %.4f) U (%.4f, INF)\n",a+y,a+y,a,a);
                }
            }
            else
            {
                bbb=d*bb-2.0*cc;
                ccc=cc*cc+e*bb*bb-d*bb*cc;
printf("(-INF, INF)\n");
                else
                {
                    t1=2.0*sqrt(ccc);
                    t2=t1+bbb;
                    t1=bbb-t1;
                    if(t1>0)
                    printf("(-INF, %.4f] U [%.4f, INF)\n",a+bb*bb/t2,a+bb*bb/t1);
printf("(-INF, %.4f]\n",a+bb*bb/t2);   
                    else if(t2<0)
                    printf("(-INF, %.4f] U [%.4f, INF)\n",a+bb*bb/t2,a+bb*bb/t1); 
printf("[%.4f, INF)\n",a+bb*bb/t1);  
                    else 
                    printf("[%.4f, %.4f]\n",a+bb*bb/t1,a+bb*bb/t2); 
                }
            }
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值