星座图与错误概率关系

本文通过学习整理 通信原理(樊昌信)数字通信(Proakis) 里的 星座图与错误概率关系

回答几个问题:

1.为什么能用星座图判决符号?星座图是如何判决符号的?

2.为什么星座图有表示错误概率的能力?错误概率为什么与星座图中最近距离有关?

一、星座图介绍

M M M 个有限能量信号波形集 { s m ( t ) } \{s_m(t)\} {sm(t)} 可以表示成维数 N ≤ M N \le M NM 的标准正交函数的加权线性组合,通过对 { s m ( t ) } \{s_m(t)\} {sm(t)} 应用施密特正交化过程可获得基函数 { ϕ n ( t ) } \{{\phi}_n(t)\} {ϕn(t)}。零均值高斯白噪声也可以按照基函数 { ϕ n ( t ) } \{{\phi}_n(t)\} {ϕn(t)} 进行展开

例如对 QAM 调制来说,对其中一个码元
e m ( t ) = A m c o s ( ω c t + θ m ) = A m c o s ( θ m ) c o s ( ω c t ) − A m s i n ( θ m ) s i n ( ω c t ) e_m(t)=A_{m}cos(\omega_ct+\theta_m)=A_{m}cos(\theta_m)cos(\omega_ct)-A_{m}sin(\theta_m)sin(\omega_ct) em(t)=Amcos(ωct+θm)=Amcos(θm)cos(ωct)Amsin(θm)sin(ωct)将其按照 IQ正交分解,得到两个基函数 ϕ 1 ( t ) = c o s ( ω c t ) , ϕ 2 ( t ) = s i n ( ω c t ) {\phi}_1(t)=cos(\omega_ct),{\phi}_2(t)=sin(\omega_ct) ϕ1(t)=cos(ωct),ϕ2(t)=sin(ωct),这两个是标准(模为1)正交(点积为0)基函数。令 X m = A m c o s ( θ m ) , Y m = A m s i n ( θ m ) X_m=A_{m}cos(\theta_m),Y_m=A_{m}sin(\theta_m) Xm=Amcos(θm),Ym=Amsin(θm),那么码元可以表示为
e m ( t ) = X m c o s ( ω c t ) + Y m s i n ( ω c t ) e_m(t)=X_{m}cos(\omega_ct)+Y_{m}sin(\omega_ct) em(t)=Xmcos(ωct)+Ymsin(ωct)对于 QAM 信号 s m ( t ) s_m(t) sm(t) 来说,可以将其用基函数表达并写成坐标形式
s m ( t ) = X m ϕ 1 ( t ) + Y m ϕ 2 ( t ) = ( X m , Y m ) s_m(t)=X_{m}{\phi}_1(t)+Y_{m}{\phi}_2(t)=(X_m,Y_m) sm(t)=Xmϕ1(t)+Ymϕ2(t)=(Xm,Ym) ϕ 1 ( t ) , ϕ 2 ( t ) {\phi}_1(t),{\phi}_2(t) ϕ1(t),ϕ2(t) 为横纵坐标,在平面上画出对应的星座点,如下图所示。

在这里插入图片描述

二、矢量信道描述

对于 AWGN 信道,信号 s m ( t ) s_m(t) sm(t) 过信道的数学描述为
r ( t ) = s m ( t ) + n ( t ) r(t)=s_m(t)+n(t) r(t)=sm(t)+n(t)式中, s m ( t ) s_m(t) sm(t) 是发送信号,是 M M M 个可能信号之一; n ( t ) n(t) n(t) 是高斯白噪声过程的一个样本波形,其均值为0功率谱密度为 N 0 / 2 N_0/2 N0/2 r ( t ) r(t) r(t) 是接收信号。

根据前面描述,可以用标准正交基表示信号 s m ( t ) s_m(t) sm(t)。可以证明任何标准正交基都可以用于零均值白高斯过程的展开式,展开式的系数是 IID 均值为 0、方差为 N 0 / 2 N_0/2 N0/2 的高斯随机变量。对于上述举的例子来说,噪声过程不能以基函数 { ϕ n ( t ) } \{{\phi}_n(t)\} {ϕn(t)} 全部展开(大数定律告诉我们,不可能用有限的基函数来表示一个高斯过程),那么将 n ( t ) n(t) n(t) 分成两个分量:一个分量(记为 n 1 ( t ) n_1(t) n1(t))是噪声中以 { ϕ n ( t ) } \{{\phi}_n(t)\} {ϕn(t)} 展开的部分,即噪声在这些基函数构建的空间中的投影;另一个分量(记为 n 2 ( t ) n_2(t) n2(t))是噪声中不能用基函数表示的部分,即
n ( t ) = n 1 ( t ) + n 2 ( t ) = ∑ j = 1 M n j ϕ j ( t ) + n 2 ( t ) n(t)=n_1(t)+n_2(t)=\sum_{j=1}^{M}n_j{\phi}_j(t)+n_2(t) n(t)=n1(t)+n2(t)=j=1Mnjϕj(t)+n2(t)可以证明
C O V [ n j n 2 ( t ) ] = E ⁡ [ n j n 2 ( t ) ] = E ⁡ [ n j n ( t ) ] − E ⁡ [ n j n 1 ( t ) ] = E ⁡ [ n ( t ) ∫ − ∞ ∞ n ( s ) ϕ j ( s ) d s ] − E ⁡ [ n j ∑ i = 1 N n i ϕ i ( t ) ] = N 0 2 ∫ − ∞ ∞ δ ( t − s ) ϕ j ( s ) d s − N 0 2 ϕ j ( t ) = N 0 2 ϕ j ( t ) − N 0 2 ϕ j ( t ) = 0 \begin{aligned} \mathrm{COV}\left[n_jn_2(t)\right]& =\operatorname{E}\left[n_jn_2(t)\right] =\operatorname{E}\left[n_jn(t)\right]-\operatorname{E}\left[n_jn_1(t)\right] \\ &=\operatorname{E}\left[n(t)\int_{-\infty}^\infty n(s)\phi_j(s)ds\right]-\operatorname{E}\left[n_j\sum_{i=1}^Nn_i\phi_i(t)\right] \\ &=\frac{N_0}2\int_{-\infty}^\infty\delta(t-s)\phi_j(s)ds-\frac{N_0}2\phi_j(t) =\frac{N_0}2\phi_j(t)-\frac{N_0}2\phi_j(t)=0 \end{aligned} COV[njn2(t)]=E[njn2(t)]=E[njn(t)]E[njn1(t)]=E[n(t)n(s)ϕj(s)ds]E[nji=1Nniϕi(t)]=2N0δ(ts)ϕj(s)ds2N0ϕj(t)=2N0ϕj(t)2N0ϕj(t)=0 n 2 ( t ) n_2(t) n2(t) 与所有的 n j n_j nj 都不相关,因为他们是联合高斯的, n 2 ( t ) n_2(t) n2(t) 与所有的 n j n_j nj 都独立,因此它与 n 1 ( t ) n_1(t) n1(t) 独立。因此对于接收信号 r ( t ) r(t) r(t) n 2 ( t ) n_2(t) n2(t) 独立于 n 1 ( t ) n_1(t) n1(t) ,因此不能提供有关发送信号所在基函数的任何信息,因此 n 2 ( t ) n_2(t) n2(t) 对检测过程没有影响,可以忽略且不影响检测器性能。

根据上述讨论可见,对最佳检测器的设计,波形 AWGN 信道为
r ( t ) = s m ( t ) + n ( t ) , 1 ≤ m ≤ M r(t)=s_m(t)+n(t),\qquad 1\le m\le M r(t)=sm(t)+n(t),1mM等效于 N N N 维的矢量信道
r = s m + n , 1 ≤ m ≤ M \boldsymbol{r}=\boldsymbol{s}_m+\boldsymbol{n},\qquad 1\le m\le M r=sm+n,1mM上述可见 AWGN 信道对信号的影响就是在原始星座点加上一个二维的高斯随机变量。

三、最佳检测

3.1 最佳判决规则

接收机对接收信号 r ( t ) r(t) r(t) 进行观察,并据此作出关于哪一个消息 m ( 1 ≤ m   ≤ M ) m(1\le m\ \le M) m(1m M) 被发送的最佳判决。最佳判决是指导致最小差错概率的判决规则,即由
P e = P [ m ^ ≠ m ] P_e=P[\hat{m}\neq m] Pe=P[m^=m]确定的发送消息 m m m 与判决结果 m ^ \hat{m} m^ 之间的不一致的概率最小化的判决规则。对于最佳检测器,使差错概率最小等价使正确判决的概率最大,在给定接收 r \boldsymbol{r} r 的条件下正确的判决概率为
P [ 正确判决 ] = ∫ P [ 正确判决 ∣ r ] p ( r ) d r = ∫ P [ 判决为 m ^ ∣ r ] p ( r ) d r \begin{aligned} P[正确判决] &=\int P[正确判决|\boldsymbol{r}]p(\boldsymbol{r})d\boldsymbol{r}\\ &=\int P[判决为\hat{m}|\boldsymbol{r}]p(\boldsymbol{r})d\boldsymbol{r} \end{aligned} P[正确判决]=P[正确判决r]p(r)dr=P[判决为m^r]p(r)dr p ( r ) p(\boldsymbol{r}) p(r) 是非负的,如果对每一个 r \boldsymbol{r} r 最大化 P [ m ^ ∣ r ] P[\hat{m}|\boldsymbol{r}] P[m^r],使得正确判决概率最大。这意味着最佳检测规则是:根据对 r \boldsymbol{r} r 的观察选取使 P [ m ∣ r ] P[{m}|\boldsymbol{r}] P[mr] 最大的消息 m m m 判决,即使得选到最大的 P [ m ^ ∣ r ] P[\hat{m}|\boldsymbol{r}] P[m^r],判决过程可以表示为
m ^ = arg ⁡ max ⁡ ⁡ 1 ≤ m ≤ M   P [ m ∣ r ] \hat{m}=\underset{1\leq m\leq M}{\operatorname*{\arg\max}}\ {P}[m \mid \boldsymbol{r}] m^=1mMargmax P[mr]因为发送信息 m m m 等价于发送 s m s_m sm,最佳判决规则可表示为
m ^ = arg ⁡ max ⁡ ⁡ 1 ≤ m ≤ M   P [ s m ∣ r ] \hat{m}=\underset{1\leq m\leq M}{\operatorname*{\arg\max}}\ {P}[s_m \mid \boldsymbol{r}] m^=1mMargmax P[smr]这两个最佳判决规则即为最大后验概率规则(MAP规则),还可以简化为
m ^ = arg ⁡ max ⁡ ⁡ 1 ≤ m ≤ M   P m p [ r ∣ s m ] P ( r ) = arg ⁡ max ⁡ ⁡ 1 ≤ m ≤ M   P m p [ r ∣ s m ] \hat{m} =\underset{1\leq m\leq M}{\operatorname*{\arg\max}}\ \frac{P_m{p}[\boldsymbol{r} \mid s_m]}{P(\boldsymbol{r})} =\underset{1\leq m\leq M}{\operatorname*{\arg\max}}\ {P_m{p}[\boldsymbol{r} \mid s_m]} m^=1mMargmax P(r)Pmp[rsm]=1mMargmax Pmp[rsm]当发送先验概率等概情况下,最佳判决规则可简化为
m ^ = arg ⁡ max ⁡ ⁡ 1 ≤ m ≤ M   p [ r ∣ s m ] \hat{m} =\underset{1\leq m\leq M}{\operatorname*{\arg\max}} \ {p}[\boldsymbol{r} \mid s_m] m^=1mMargmax p[rsm]该式称为最大似然接收机(ML接收机), p [ r ∣ s m ] {p}[\boldsymbol{r} \mid s_m] p[rsm] 称为消息 m m m 的似然函数。当先验概率不等概时,ML 检测器不是最佳检测器。

3.2 矢量 AWGN 信道的最佳检测

噪声矢量 n \boldsymbol{n} n 的 PDF 为
p ( n ) = ( 1 π N 0 ) N e − ∑ j = 1 N n j 2 2 σ 2 = ( 1 π N 0 ) N e − ∥ n ∥ 2 N 0 p(n)=\left(\frac1{\sqrt{\pi N_0}}\right)^Ne^{-\frac{\sum_{j=1}^Nn_j^2}{2\sigma^2}}=\left(\frac1{\sqrt{\pi N_0}}\right)^Ne^{-\frac{\|n\|^2}{N_0}} p(n)=(πN0 1)Ne2σ2j=1Nnj2=(πN0 1)NeN0n2那么对于 MAP 检测器有
m = arg ⁡ max ⁡ 1 ≤ m ≤ M [ P m p ( r ∣ s m ) ] = arg ⁡ max ⁡ 1 ≤ m ≤ M P m [ p n ( r − s m ) ] = arg ⁡ max ⁡ 1 ≤ m ≤ M [ P m ( 1 π N 0 ) N e − ∥ r − s m ∥ 2 N 0 ] = ( a ) arg ⁡ max ⁡ 1 ≤ m ≤ M [ P m e − ∥ r − s m ∥ 2 N 0 ] = ( b ) arg ⁡ max ⁡ 1 ≤ m ≤ M [ ln ⁡ P m − ∥ r − s m ∥ 2 N 0 ] = ⁡ ( c ) arg ⁡ max ⁡ 1 ≤ m ≤ M [ N 0 2 ln ⁡ P m − 1 2 ∥ r − s m ∥ 2 ] = arg ⁡ max ⁡ 1 ≤ m ≤ M [ N 0 2 ln ⁡ P m − 1 2 ( ∥ r ∥ 2 + ∥ s m ∥ 2 − 2 r ⋅ s m ) ] = ( d ) arg ⁡ max ⁡ 1 ≤ m ≤ M [ N 0 2 ln ⁡ P m − 1 2 E m + r ⋅ s m ] = ⁡ ( e ) arg ⁡ max ⁡ 1 ≤ m ≤ M [ η m + r ⋅ s m ] \begin{aligned} \text{m}& =\arg\max_{1\leq m\leq M}\left[P_mp(\boldsymbol{r}|\boldsymbol{s}_m)\right] \\ &=\arg\max_{1\leq m\leq M}P_m\left[p_n(\boldsymbol{r}-s_m)\right] \\ &=\arg\max_{1\leq m\leq M}\left[P_m\left(\frac{1}{\sqrt{\pi N_0}}\right)^Ne^{-\frac{\|r-s_m\|^2}{N_0}}\right] \\ &\stackrel{(a)}{=}\arg\max_{1\leq m\leq M}\left[P_m\left.e^{-\frac{\|\boldsymbol{r}-\boldsymbol{s}_m\|^2}{N_0}}\right]\right. \\ &\stackrel{(b)}{=}\arg\max_{1\leq m\leq M}\left[\ln P_m-\frac{\|\boldsymbol{r}-s_m\|^2}{N_0}\right] \\ &\overset{(c)}{\operatorname*{=}}\arg\max_{1\leq m\leq M}\left[\frac{N_0}2\ln P_m-\frac12\|\boldsymbol{r}-\boldsymbol{s}_m\|^2\right] \\ &=\arg\max_{1\le m\le M}\left[\frac{N_0}{2}\ln P_m-\frac{1}{2}\left(\|\boldsymbol{r}\|^2+\|\boldsymbol{s}_m\|^2-2\boldsymbol{r}\cdot\boldsymbol{s}_m\right)\right] \\ &\stackrel{(d)}{=}\arg\max_{1\leq m\leq M}\left[\frac{N_0}2\ln P_m-\frac12\mathcal{E}_m+\boldsymbol{r}\cdot\boldsymbol{s}_m\right] \\ &\overset{(e)}{\operatorname*{=}}\arg\max_{1\leq m\leq M}\left[\eta_m+r\cdot s_m\right] \end{aligned} m=arg1mMmax[Pmp(rsm)]=arg1mMmaxPm[pn(rsm)]=arg1mMmax[Pm(πN0 1)NeN0rsm2]=(a)arg1mMmax[PmeN0rsm2]=(b)arg1mMmax[lnPmN0rsm2]=(c)arg1mMmax[2N0lnPm21rsm2]=arg1mMmax[2N0lnPm21(r2+sm22rsm)]=(d)arg1mMmax[2N0lnPm21Em+rsm]=(e)arg1mMmax[ηm+rsm]定义 η m = N 0 2 ln ⁡ P m − 1 2 E m \eta_m=\frac{N_0}2\ln P_m-\frac12\mathcal{E}_m ηm=2N0lnPm21Em,其中 E m = ∥ s m ∥ 2 \mathcal{E}_m=\|\boldsymbol{s}_m\|^2 Em=sm2 为发送信号 s m \boldsymbol{s}_m sm 的能量。

当发送信息等概时,该关系式可以简化,写作
m = arg ⁡ max ⁡ 1 ≤ m ≤ M [ N 0 2 ln ⁡ P m − 1 2 ∥ r − s m ∥ 2 ] = arg ⁡ max ⁡ 1 ≤ m ≤ M [ − ∥ r − s m ∥ 2 ] = arg ⁡ min ⁡ 1 ≤ m ≤ M ∥ r − s m ∥ \begin{aligned} \text{m}& =\arg\max_{1\leq m\leq M}\left[\frac{N_0}2\ln P_m-\frac12\|\boldsymbol{r}-s_m\|^2\right] \\ &=\arg\max_{1\leq m\leq M}\left[-\|\boldsymbol{r}-\boldsymbol{s}_m\|^2\right] \\ &=\arg\min_{1\leq m\leq M}\|\boldsymbol{r}-\boldsymbol{s}_m\| \end{aligned} m=arg1mMmax[2N0lnPm21rsm2]=arg1mMmax[rsm2]=arg1mMminrsm该式的几何解释非常明显。接收机接收 r \boldsymbol{r} r 并以标准欧式距离在基函数 { ϕ n ( t ) } \{{\phi}_n(t)\} {ϕn(t)} 下在所有 s m \boldsymbol{s}_m sm 中寻找与 r \boldsymbol{r} r 距离最近者,这样的检测器被称为最近邻或最小距离检测器。在这种情况下,判决域 D m D_m Dm D m + 1 D_{m+1} Dm+1 的边界是与 s m \boldsymbol{s}_m sm s m + 1 \boldsymbol{s}_{m+1} sm+1 等距离点的集合,就是这两个点的垂直平分线,一般来讲该边界是一个超平面。如下图所示是一个具有 4 个信号点的二维 (N=2) 的星座,实线表示判决域的边界,它是连接各信号点虚线的垂直平分线。

在这里插入图片描述

3.3 等概二进制信号传输方式的差错概率

在这种情况下,发送机将两个等概的信号 s 1 ( t ) s_1(t) s1(t) s 2 ( t ) s_2(t) s2(t) 在 AWGN 信道下传输。因为信号是等概的这两个判决域由 s 1 ( t ) s_1(t) s1(t) s 2 ( t ) s_2(t) s2(t) 连线的垂直平分线来划分。由于对称性,发送 s 1 ( t ) s_1(t) s1(t) s 2 ( t ) s_2(t) s2(t) 的差错概率相等,因此 P b = P [ 判决错误 ∣ 发送 s 1 ] P_b=P[判决错误 \mid 发送 \boldsymbol{s}_1] Pb=P[判决错误发送s1]。下图展示了判决域与 s 1 \boldsymbol{s}_1 s1 s 2 \boldsymbol{s}_2 s2 示意图。

在这里插入图片描述

当发送 s 1 \boldsymbol{s}_1 s1 时,如果 r \boldsymbol{r} r 位于判决域 D 2 D_2 D2 一侧则会发生差错,这意味着 r − s 1 \boldsymbol{r}-\boldsymbol{s}_1 rs1 s 2 − s 1 \boldsymbol{s}_2-\boldsymbol{s}_1 s2s1 上的投影(即 A 点)与 s 1 \boldsymbol{s}_1 s1 之间的距离大于 d 12 / 2 d_{12}/2 d12/2 ,其中 d 12 = ∥ s 2 − s 1 ∥ d_{12}=\| \boldsymbol{s}_2-\boldsymbol{s}_1 \| d12=s2s1。注意,因为发送 s 1 \boldsymbol{s}_1 s1 n = r − s 1 \boldsymbol{n}=\boldsymbol{r}-\boldsymbol{s}_1 n=rs1 r − s 1 \boldsymbol{r}-\boldsymbol{s}_1 rs1 s 2 − s 1 \boldsymbol{s}_2-\boldsymbol{s}_1 s2s1 上的投影变为等于 n ( s 2 − s 1 ) / d 12 \boldsymbol{n}(\boldsymbol{s}_2-\boldsymbol{s}_1)/d_{12} n(s2s1)/d12 ,所以差错概率为
P b = P [ n ⋅ ( s 2 − s 1 ) d 12 > d 12 2 ] P_b={P}\left[\frac{\boldsymbol{n}\cdot(\boldsymbol{s}_2-\boldsymbol{s}_1)}{d_{12}}>\frac{d_{12}}2\right] Pb=P[d12n(s2s1)>2d12]

P b = P [ n ⋅ ( s 2 − s 1 ) > d 12 2 2 ] P_b={P}\left[\boldsymbol{n}\cdot(\boldsymbol{s}_2-\boldsymbol{s}_1)>\frac{d_{12}^2}{2}\right] Pb=P[n(s2s1)>2d122]
注意到 n ⋅ ( s 2 − s 1 ) \boldsymbol{n}\cdot(\boldsymbol{s}_2-\boldsymbol{s}_1) n(s2s1) 是零均值高斯随机变量,其方差为 d 12 2 N 0 / 2 d_{12}^2 N_0 /2 d122N0/2。因此可得
P b = Q ( d 12 2 2 d 12 N 0 2 ) = Q ( d 12 2 2 N 0 ) \begin{gathered} P_{b} =Q\left(\frac{\frac{d_{12}^2}{2}}{d_{12}\sqrt{\frac{N_0}{2}}}\right) \\ =Q\left(\sqrt{\frac{d_{12}^2}{2N_0}}\right) \end{gathered} Pb=Q d122N0 2d122 =Q 2N0d122
上式具有通用性,它适用于所有等概二进制信号传输系统,而不管信号的形状如何。因为 Q ( ⋅ ) Q(\cdot) Q() 是递减函数,为了使差错概率最小,必须使信号之间的距离最大。距离 d 12 d_{12} d12
d 12 2 = ∫ − ∞ ∞ ( s 1 ( t ) − s 2 ( t ) ) 2 d t d_{12}^2=\int_{-\infty}^\infty\left(s_1(t)-s_2(t)\right)^2dt d122=(s1(t)s2(t))2dt
在等概二进制信号且等能量(即 E s 1 = E s 2 = E {\mathcal{E}_{s_1}}=\mathcal{E}_{s_2}=\mathcal{E} Es1=Es2=E)的情况下,上式可展开为
d 12 2 = E s 1 + E s 2 − 2 ⟨ s 1 ( t ) , s 2 ( t ) ⟩ = 2 E ( 1 − ρ ) d_{12}^2=\mathcal{E}_{s_1}+\mathcal{E}_{s_2}-2\langle s_1(t),s_2(t)\rangle=2\mathcal{E}(1-\rho) d122=Es1+Es22s1(t),s2(t)⟩=2E(1ρ)
式中, ρ \rho ρ s 1 ( t ) s_1(t) s1(t) s 2 ( t ) s_2(t) s2(t) 之间的互相关系数, − 1 ≤ ρ ≤ 1 -1\leq\rho\leq1 1ρ1 ,当 ρ = − 1 \rho=-1 ρ=1 即双极性信号时二进制信号的距离最大,在这种情况下系统的差错概率最小。

四、最佳接收机的实现

4.1 匹配滤波器接收机与星座点

在最佳检测里推导出了最佳 MAP 判决规则
m ^ = arg ⁡ max ⁡ 1 ≤ m ≤ M [ η m + r ⋅ s m ] , η m = N 0 2 ln ⁡ P m − 1 2 E m \begin{aligned} \hat{m}&=\arg\max_{1\leq m\leq M}\left[\eta_m+\boldsymbol{r}\cdot \boldsymbol{s}_m\right],\quad\eta_m=\frac{N_0}2\ln P_m-\frac12\mathcal{E}_m \end{aligned} m^=arg1mMmax[ηm+rsm],ηm=2N0lnPm21Em
r ⋅ s m \boldsymbol{r}\cdot \boldsymbol{s}_m rsm 可以通过多种方法,例如用相关的方法,接收机用每一个基函数 ϕ j ( t ) {\phi}_j(t) ϕj(t) r ( t ) r(t) r(t) 再积分可以得到 r \boldsymbol{r} r 的全部份量,然后求 r \boldsymbol{r} r 与每一个 s m \boldsymbol{s}_m sm 的内积;或者用等价的时域积分 ∫ − ∞ ∞ r ( t ) s m ( t ) d t \int_{-\infty}^\infty r(t)s_m(t)dt r(t)sm(t)dt 。这两种方法中,都需要计算
r x = ∫ − ∞ ∞ r ( t ) x ( t ) d t r_x=\int_{-\infty}^\infty r(t)x(t)dt rx=r(t)x(t)dt
式中, x ( t ) x(t) x(t) ϕ j ( t ) {\phi}_j(t) ϕj(t) s m ( t ) {s}_m(t) sm(t)。如果定义 h ( t ) = x ( T − t ) h(t)=x(T-t) h(t)=x(Tt),其中 T T T 为任意值,具有冲激响应 h ( t ) h(t) h(t) 的滤波器称为匹配与 x ( t ) x(t) x(t) 的滤波器或者匹配滤波器。如果该滤波器的输入为 r ( t ) r(t) r(t) ,则其输出 y ( t ) y(t) y(t) r ( t ) r(t) r(t) h ( t ) h(t) h(t) 的卷积,即
y ( t ) = r ( t ) ∗ h ( t ) = ∫ − ∞ ∞ r ( τ ) h ( t − τ ) d τ = ∫ − ∞ ∞ r ( τ ) x ( T − t + τ ) d τ \begin{aligned} y(t)& =r(t)* h(t) \\ &=\int_{-\infty}^\infty r(\tau)h(t-\tau)d\tau \\ &=\int_{-\infty}^\infty r(\tau)x(T-t+\tau)d\tau \end{aligned} y(t)=r(t)h(t)=r(τ)h(tτ)dτ=r(τ)x(Tt+τ)dτ
上式表明
r x = y ( T ) = ∫ − ∞ ∞ r ( τ ) x ( τ ) d ⁡ τ r_x=y(T)=\int_{-\infty}^\infty r(\tau)x(\tau)\operatorname{d}\tau rx=y(T)=r(τ)x(τ)dτ
上式表明相关器的输出 r x r_x rx 可以通过匹配滤波器再 t = T t=T t=T 时刻抽样得到。注意,抽样时刻必须准确的设置为 t = T t=T t=T ,其中 T T T 再匹配滤波器的设计中去任意值。只要满足这个条件, T T T 的选择是不相关的;然而从实际的情况来看, T T T 的选择原则是必须使滤波器符合因果关系,即当 t < 0 t<0 t<0 h ( t ) = 0 h(t)=0 h(t)=0,这就要对 T T T 的可能取值加以限制。最佳接收机的匹配滤波器的实现如下图所示。

在这里插入图片描述

根据上述,接收机用每一个基函数 ϕ j ( t ) {\phi}_j(t) ϕj(t) r ( t ) r(t) r(t) 再积分可以得到 r \boldsymbol{r} r 的全部分量,再判断 r \boldsymbol{r} r 与哪个 s \boldsymbol{s} s 最近即可实现判决。

而对于IQ调制,通过IQ正交的设计已实现了分出 r \boldsymbol{r} r 的各个分量;通过成型滤波与接收滤波的设计,可以实现无码间串扰条件;在最佳抽样点抽样,可以实现抽样时刻的信噪比最大。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值