本文通过学习整理 通信原理(樊昌信) 与 数字通信(Proakis) 里的 星座图与错误概率关系
回答几个问题:
1.为什么能用星座图判决符号?星座图是如何判决符号的?
2.为什么星座图有表示错误概率的能力?错误概率为什么与星座图中最近距离有关?
一、星座图介绍
M M M 个有限能量信号波形集 { s m ( t ) } \{s_m(t)\} {sm(t)} 可以表示成维数 N ≤ M N \le M N≤M 的标准正交函数的加权线性组合,通过对 { s m ( t ) } \{s_m(t)\} {sm(t)} 应用施密特正交化过程可获得基函数 { ϕ n ( t ) } \{{\phi}_n(t)\} {ϕn(t)}。零均值高斯白噪声也可以按照基函数 { ϕ n ( t ) } \{{\phi}_n(t)\} {ϕn(t)} 进行展开
例如对 QAM 调制来说,对其中一个码元
e
m
(
t
)
=
A
m
c
o
s
(
ω
c
t
+
θ
m
)
=
A
m
c
o
s
(
θ
m
)
c
o
s
(
ω
c
t
)
−
A
m
s
i
n
(
θ
m
)
s
i
n
(
ω
c
t
)
e_m(t)=A_{m}cos(\omega_ct+\theta_m)=A_{m}cos(\theta_m)cos(\omega_ct)-A_{m}sin(\theta_m)sin(\omega_ct)
em(t)=Amcos(ωct+θm)=Amcos(θm)cos(ωct)−Amsin(θm)sin(ωct)将其按照 IQ正交分解,得到两个基函数
ϕ
1
(
t
)
=
c
o
s
(
ω
c
t
)
,
ϕ
2
(
t
)
=
s
i
n
(
ω
c
t
)
{\phi}_1(t)=cos(\omega_ct),{\phi}_2(t)=sin(\omega_ct)
ϕ1(t)=cos(ωct),ϕ2(t)=sin(ωct),这两个是标准(模为1)正交(点积为0)基函数。令
X
m
=
A
m
c
o
s
(
θ
m
)
,
Y
m
=
A
m
s
i
n
(
θ
m
)
X_m=A_{m}cos(\theta_m),Y_m=A_{m}sin(\theta_m)
Xm=Amcos(θm),Ym=Amsin(θm),那么码元可以表示为
e
m
(
t
)
=
X
m
c
o
s
(
ω
c
t
)
+
Y
m
s
i
n
(
ω
c
t
)
e_m(t)=X_{m}cos(\omega_ct)+Y_{m}sin(\omega_ct)
em(t)=Xmcos(ωct)+Ymsin(ωct)对于 QAM 信号
s
m
(
t
)
s_m(t)
sm(t) 来说,可以将其用基函数表达并写成坐标形式
s
m
(
t
)
=
X
m
ϕ
1
(
t
)
+
Y
m
ϕ
2
(
t
)
=
(
X
m
,
Y
m
)
s_m(t)=X_{m}{\phi}_1(t)+Y_{m}{\phi}_2(t)=(X_m,Y_m)
sm(t)=Xmϕ1(t)+Ymϕ2(t)=(Xm,Ym)令
ϕ
1
(
t
)
,
ϕ
2
(
t
)
{\phi}_1(t),{\phi}_2(t)
ϕ1(t),ϕ2(t) 为横纵坐标,在平面上画出对应的星座点,如下图所示。
二、矢量信道描述
对于 AWGN 信道,信号
s
m
(
t
)
s_m(t)
sm(t) 过信道的数学描述为
r
(
t
)
=
s
m
(
t
)
+
n
(
t
)
r(t)=s_m(t)+n(t)
r(t)=sm(t)+n(t)式中,
s
m
(
t
)
s_m(t)
sm(t) 是发送信号,是
M
M
M 个可能信号之一;
n
(
t
)
n(t)
n(t) 是高斯白噪声过程的一个样本波形,其均值为0功率谱密度为
N
0
/
2
N_0/2
N0/2;
r
(
t
)
r(t)
r(t) 是接收信号。
根据前面描述,可以用标准正交基表示信号
s
m
(
t
)
s_m(t)
sm(t)。可以证明任何标准正交基都可以用于零均值白高斯过程的展开式,展开式的系数是 IID 均值为 0、方差为
N
0
/
2
N_0/2
N0/2 的高斯随机变量。对于上述举的例子来说,噪声过程不能以基函数
{
ϕ
n
(
t
)
}
\{{\phi}_n(t)\}
{ϕn(t)} 全部展开(大数定律告诉我们,不可能用有限的基函数来表示一个高斯过程),那么将
n
(
t
)
n(t)
n(t) 分成两个分量:一个分量(记为
n
1
(
t
)
n_1(t)
n1(t))是噪声中以
{
ϕ
n
(
t
)
}
\{{\phi}_n(t)\}
{ϕn(t)} 展开的部分,即噪声在这些基函数构建的空间中的投影;另一个分量(记为
n
2
(
t
)
n_2(t)
n2(t))是噪声中不能用基函数表示的部分,即
n
(
t
)
=
n
1
(
t
)
+
n
2
(
t
)
=
∑
j
=
1
M
n
j
ϕ
j
(
t
)
+
n
2
(
t
)
n(t)=n_1(t)+n_2(t)=\sum_{j=1}^{M}n_j{\phi}_j(t)+n_2(t)
n(t)=n1(t)+n2(t)=j=1∑Mnjϕj(t)+n2(t)可以证明
C
O
V
[
n
j
n
2
(
t
)
]
=
E
[
n
j
n
2
(
t
)
]
=
E
[
n
j
n
(
t
)
]
−
E
[
n
j
n
1
(
t
)
]
=
E
[
n
(
t
)
∫
−
∞
∞
n
(
s
)
ϕ
j
(
s
)
d
s
]
−
E
[
n
j
∑
i
=
1
N
n
i
ϕ
i
(
t
)
]
=
N
0
2
∫
−
∞
∞
δ
(
t
−
s
)
ϕ
j
(
s
)
d
s
−
N
0
2
ϕ
j
(
t
)
=
N
0
2
ϕ
j
(
t
)
−
N
0
2
ϕ
j
(
t
)
=
0
\begin{aligned} \mathrm{COV}\left[n_jn_2(t)\right]& =\operatorname{E}\left[n_jn_2(t)\right] =\operatorname{E}\left[n_jn(t)\right]-\operatorname{E}\left[n_jn_1(t)\right] \\ &=\operatorname{E}\left[n(t)\int_{-\infty}^\infty n(s)\phi_j(s)ds\right]-\operatorname{E}\left[n_j\sum_{i=1}^Nn_i\phi_i(t)\right] \\ &=\frac{N_0}2\int_{-\infty}^\infty\delta(t-s)\phi_j(s)ds-\frac{N_0}2\phi_j(t) =\frac{N_0}2\phi_j(t)-\frac{N_0}2\phi_j(t)=0 \end{aligned}
COV[njn2(t)]=E[njn2(t)]=E[njn(t)]−E[njn1(t)]=E[n(t)∫−∞∞n(s)ϕj(s)ds]−E[nji=1∑Nniϕi(t)]=2N0∫−∞∞δ(t−s)ϕj(s)ds−2N0ϕj(t)=2N0ϕj(t)−2N0ϕj(t)=0即
n
2
(
t
)
n_2(t)
n2(t) 与所有的
n
j
n_j
nj 都不相关,因为他们是联合高斯的,
n
2
(
t
)
n_2(t)
n2(t) 与所有的
n
j
n_j
nj 都独立,因此它与
n
1
(
t
)
n_1(t)
n1(t) 独立。因此对于接收信号
r
(
t
)
r(t)
r(t),
n
2
(
t
)
n_2(t)
n2(t) 独立于
n
1
(
t
)
n_1(t)
n1(t) ,因此不能提供有关发送信号所在基函数的任何信息,因此
n
2
(
t
)
n_2(t)
n2(t) 对检测过程没有影响,可以忽略且不影响检测器性能。
根据上述讨论可见,对最佳检测器的设计,波形 AWGN 信道为
r
(
t
)
=
s
m
(
t
)
+
n
(
t
)
,
1
≤
m
≤
M
r(t)=s_m(t)+n(t),\qquad 1\le m\le M
r(t)=sm(t)+n(t),1≤m≤M等效于
N
N
N 维的矢量信道
r
=
s
m
+
n
,
1
≤
m
≤
M
\boldsymbol{r}=\boldsymbol{s}_m+\boldsymbol{n},\qquad 1\le m\le M
r=sm+n,1≤m≤M上述可见 AWGN 信道对信号的影响就是在原始星座点加上一个二维的高斯随机变量。
三、最佳检测
3.1 最佳判决规则
接收机对接收信号
r
(
t
)
r(t)
r(t) 进行观察,并据此作出关于哪一个消息
m
(
1
≤
m
≤
M
)
m(1\le m\ \le M)
m(1≤m ≤M) 被发送的最佳判决。最佳判决是指导致最小差错概率的判决规则,即由
P
e
=
P
[
m
^
≠
m
]
P_e=P[\hat{m}\neq m]
Pe=P[m^=m]确定的发送消息
m
m
m 与判决结果
m
^
\hat{m}
m^ 之间的不一致的概率最小化的判决规则。对于最佳检测器,使差错概率最小等价使正确判决的概率最大,在给定接收
r
\boldsymbol{r}
r 的条件下正确的判决概率为
P
[
正确判决
]
=
∫
P
[
正确判决
∣
r
]
p
(
r
)
d
r
=
∫
P
[
判决为
m
^
∣
r
]
p
(
r
)
d
r
\begin{aligned} P[正确判决] &=\int P[正确判决|\boldsymbol{r}]p(\boldsymbol{r})d\boldsymbol{r}\\ &=\int P[判决为\hat{m}|\boldsymbol{r}]p(\boldsymbol{r})d\boldsymbol{r} \end{aligned}
P[正确判决]=∫P[正确判决∣r]p(r)dr=∫P[判决为m^∣r]p(r)dr
p
(
r
)
p(\boldsymbol{r})
p(r) 是非负的,如果对每一个
r
\boldsymbol{r}
r 最大化
P
[
m
^
∣
r
]
P[\hat{m}|\boldsymbol{r}]
P[m^∣r],使得正确判决概率最大。这意味着最佳检测规则是:根据对
r
\boldsymbol{r}
r 的观察选取使
P
[
m
∣
r
]
P[{m}|\boldsymbol{r}]
P[m∣r] 最大的消息
m
m
m 判决,即使得选到最大的
P
[
m
^
∣
r
]
P[\hat{m}|\boldsymbol{r}]
P[m^∣r],判决过程可以表示为
m
^
=
arg
max
1
≤
m
≤
M
P
[
m
∣
r
]
\hat{m}=\underset{1\leq m\leq M}{\operatorname*{\arg\max}}\ {P}[m \mid \boldsymbol{r}]
m^=1≤m≤Margmax P[m∣r]因为发送信息
m
m
m 等价于发送
s
m
s_m
sm,最佳判决规则可表示为
m
^
=
arg
max
1
≤
m
≤
M
P
[
s
m
∣
r
]
\hat{m}=\underset{1\leq m\leq M}{\operatorname*{\arg\max}}\ {P}[s_m \mid \boldsymbol{r}]
m^=1≤m≤Margmax P[sm∣r]这两个最佳判决规则即为最大后验概率规则(MAP规则),还可以简化为
m
^
=
arg
max
1
≤
m
≤
M
P
m
p
[
r
∣
s
m
]
P
(
r
)
=
arg
max
1
≤
m
≤
M
P
m
p
[
r
∣
s
m
]
\hat{m} =\underset{1\leq m\leq M}{\operatorname*{\arg\max}}\ \frac{P_m{p}[\boldsymbol{r} \mid s_m]}{P(\boldsymbol{r})} =\underset{1\leq m\leq M}{\operatorname*{\arg\max}}\ {P_m{p}[\boldsymbol{r} \mid s_m]}
m^=1≤m≤Margmax P(r)Pmp[r∣sm]=1≤m≤Margmax Pmp[r∣sm]当发送先验概率等概情况下,最佳判决规则可简化为
m
^
=
arg
max
1
≤
m
≤
M
p
[
r
∣
s
m
]
\hat{m} =\underset{1\leq m\leq M}{\operatorname*{\arg\max}} \ {p}[\boldsymbol{r} \mid s_m]
m^=1≤m≤Margmax p[r∣sm]该式称为最大似然接收机(ML接收机),
p
[
r
∣
s
m
]
{p}[\boldsymbol{r} \mid s_m]
p[r∣sm] 称为消息
m
m
m 的似然函数。当先验概率不等概时,ML 检测器不是最佳检测器。
3.2 矢量 AWGN 信道的最佳检测
噪声矢量
n
\boldsymbol{n}
n 的 PDF 为
p
(
n
)
=
(
1
π
N
0
)
N
e
−
∑
j
=
1
N
n
j
2
2
σ
2
=
(
1
π
N
0
)
N
e
−
∥
n
∥
2
N
0
p(n)=\left(\frac1{\sqrt{\pi N_0}}\right)^Ne^{-\frac{\sum_{j=1}^Nn_j^2}{2\sigma^2}}=\left(\frac1{\sqrt{\pi N_0}}\right)^Ne^{-\frac{\|n\|^2}{N_0}}
p(n)=(πN01)Ne−2σ2∑j=1Nnj2=(πN01)Ne−N0∥n∥2那么对于 MAP 检测器有
m
=
arg
max
1
≤
m
≤
M
[
P
m
p
(
r
∣
s
m
)
]
=
arg
max
1
≤
m
≤
M
P
m
[
p
n
(
r
−
s
m
)
]
=
arg
max
1
≤
m
≤
M
[
P
m
(
1
π
N
0
)
N
e
−
∥
r
−
s
m
∥
2
N
0
]
=
(
a
)
arg
max
1
≤
m
≤
M
[
P
m
e
−
∥
r
−
s
m
∥
2
N
0
]
=
(
b
)
arg
max
1
≤
m
≤
M
[
ln
P
m
−
∥
r
−
s
m
∥
2
N
0
]
=
(
c
)
arg
max
1
≤
m
≤
M
[
N
0
2
ln
P
m
−
1
2
∥
r
−
s
m
∥
2
]
=
arg
max
1
≤
m
≤
M
[
N
0
2
ln
P
m
−
1
2
(
∥
r
∥
2
+
∥
s
m
∥
2
−
2
r
⋅
s
m
)
]
=
(
d
)
arg
max
1
≤
m
≤
M
[
N
0
2
ln
P
m
−
1
2
E
m
+
r
⋅
s
m
]
=
(
e
)
arg
max
1
≤
m
≤
M
[
η
m
+
r
⋅
s
m
]
\begin{aligned} \text{m}& =\arg\max_{1\leq m\leq M}\left[P_mp(\boldsymbol{r}|\boldsymbol{s}_m)\right] \\ &=\arg\max_{1\leq m\leq M}P_m\left[p_n(\boldsymbol{r}-s_m)\right] \\ &=\arg\max_{1\leq m\leq M}\left[P_m\left(\frac{1}{\sqrt{\pi N_0}}\right)^Ne^{-\frac{\|r-s_m\|^2}{N_0}}\right] \\ &\stackrel{(a)}{=}\arg\max_{1\leq m\leq M}\left[P_m\left.e^{-\frac{\|\boldsymbol{r}-\boldsymbol{s}_m\|^2}{N_0}}\right]\right. \\ &\stackrel{(b)}{=}\arg\max_{1\leq m\leq M}\left[\ln P_m-\frac{\|\boldsymbol{r}-s_m\|^2}{N_0}\right] \\ &\overset{(c)}{\operatorname*{=}}\arg\max_{1\leq m\leq M}\left[\frac{N_0}2\ln P_m-\frac12\|\boldsymbol{r}-\boldsymbol{s}_m\|^2\right] \\ &=\arg\max_{1\le m\le M}\left[\frac{N_0}{2}\ln P_m-\frac{1}{2}\left(\|\boldsymbol{r}\|^2+\|\boldsymbol{s}_m\|^2-2\boldsymbol{r}\cdot\boldsymbol{s}_m\right)\right] \\ &\stackrel{(d)}{=}\arg\max_{1\leq m\leq M}\left[\frac{N_0}2\ln P_m-\frac12\mathcal{E}_m+\boldsymbol{r}\cdot\boldsymbol{s}_m\right] \\ &\overset{(e)}{\operatorname*{=}}\arg\max_{1\leq m\leq M}\left[\eta_m+r\cdot s_m\right] \end{aligned}
m=arg1≤m≤Mmax[Pmp(r∣sm)]=arg1≤m≤MmaxPm[pn(r−sm)]=arg1≤m≤Mmax[Pm(πN01)Ne−N0∥r−sm∥2]=(a)arg1≤m≤Mmax[Pme−N0∥r−sm∥2]=(b)arg1≤m≤Mmax[lnPm−N0∥r−sm∥2]=(c)arg1≤m≤Mmax[2N0lnPm−21∥r−sm∥2]=arg1≤m≤Mmax[2N0lnPm−21(∥r∥2+∥sm∥2−2r⋅sm)]=(d)arg1≤m≤Mmax[2N0lnPm−21Em+r⋅sm]=(e)arg1≤m≤Mmax[ηm+r⋅sm]定义
η
m
=
N
0
2
ln
P
m
−
1
2
E
m
\eta_m=\frac{N_0}2\ln P_m-\frac12\mathcal{E}_m
ηm=2N0lnPm−21Em,其中
E
m
=
∥
s
m
∥
2
\mathcal{E}_m=\|\boldsymbol{s}_m\|^2
Em=∥sm∥2 为发送信号
s
m
\boldsymbol{s}_m
sm 的能量。
当发送信息等概时,该关系式可以简化,写作
m
=
arg
max
1
≤
m
≤
M
[
N
0
2
ln
P
m
−
1
2
∥
r
−
s
m
∥
2
]
=
arg
max
1
≤
m
≤
M
[
−
∥
r
−
s
m
∥
2
]
=
arg
min
1
≤
m
≤
M
∥
r
−
s
m
∥
\begin{aligned} \text{m}& =\arg\max_{1\leq m\leq M}\left[\frac{N_0}2\ln P_m-\frac12\|\boldsymbol{r}-s_m\|^2\right] \\ &=\arg\max_{1\leq m\leq M}\left[-\|\boldsymbol{r}-\boldsymbol{s}_m\|^2\right] \\ &=\arg\min_{1\leq m\leq M}\|\boldsymbol{r}-\boldsymbol{s}_m\| \end{aligned}
m=arg1≤m≤Mmax[2N0lnPm−21∥r−sm∥2]=arg1≤m≤Mmax[−∥r−sm∥2]=arg1≤m≤Mmin∥r−sm∥该式的几何解释非常明显。接收机接收
r
\boldsymbol{r}
r 并以标准欧式距离在基函数
{
ϕ
n
(
t
)
}
\{{\phi}_n(t)\}
{ϕn(t)} 下在所有
s
m
\boldsymbol{s}_m
sm 中寻找与
r
\boldsymbol{r}
r 距离最近者,这样的检测器被称为最近邻或最小距离检测器。在这种情况下,判决域
D
m
D_m
Dm 与
D
m
+
1
D_{m+1}
Dm+1 的边界是与
s
m
\boldsymbol{s}_m
sm 和
s
m
+
1
\boldsymbol{s}_{m+1}
sm+1 等距离点的集合,就是这两个点的垂直平分线,一般来讲该边界是一个超平面。如下图所示是一个具有 4 个信号点的二维 (N=2) 的星座,实线表示判决域的边界,它是连接各信号点虚线的垂直平分线。
3.3 等概二进制信号传输方式的差错概率
在这种情况下,发送机将两个等概的信号 s 1 ( t ) s_1(t) s1(t) 和 s 2 ( t ) s_2(t) s2(t) 在 AWGN 信道下传输。因为信号是等概的这两个判决域由 s 1 ( t ) s_1(t) s1(t) 与 s 2 ( t ) s_2(t) s2(t) 连线的垂直平分线来划分。由于对称性,发送 s 1 ( t ) s_1(t) s1(t) 或 s 2 ( t ) s_2(t) s2(t) 的差错概率相等,因此 P b = P [ 判决错误 ∣ 发送 s 1 ] P_b=P[判决错误 \mid 发送 \boldsymbol{s}_1] Pb=P[判决错误∣发送s1]。下图展示了判决域与 s 1 \boldsymbol{s}_1 s1 和 s 2 \boldsymbol{s}_2 s2 示意图。
当发送
s
1
\boldsymbol{s}_1
s1 时,如果
r
\boldsymbol{r}
r 位于判决域
D
2
D_2
D2 一侧则会发生差错,这意味着
r
−
s
1
\boldsymbol{r}-\boldsymbol{s}_1
r−s1 在
s
2
−
s
1
\boldsymbol{s}_2-\boldsymbol{s}_1
s2−s1 上的投影(即 A 点)与
s
1
\boldsymbol{s}_1
s1 之间的距离大于
d
12
/
2
d_{12}/2
d12/2 ,其中
d
12
=
∥
s
2
−
s
1
∥
d_{12}=\| \boldsymbol{s}_2-\boldsymbol{s}_1 \|
d12=∥s2−s1∥。注意,因为发送
s
1
\boldsymbol{s}_1
s1 ,
n
=
r
−
s
1
\boldsymbol{n}=\boldsymbol{r}-\boldsymbol{s}_1
n=r−s1,
r
−
s
1
\boldsymbol{r}-\boldsymbol{s}_1
r−s1 在
s
2
−
s
1
\boldsymbol{s}_2-\boldsymbol{s}_1
s2−s1 上的投影变为等于
n
(
s
2
−
s
1
)
/
d
12
\boldsymbol{n}(\boldsymbol{s}_2-\boldsymbol{s}_1)/d_{12}
n(s2−s1)/d12 ,所以差错概率为
P
b
=
P
[
n
⋅
(
s
2
−
s
1
)
d
12
>
d
12
2
]
P_b={P}\left[\frac{\boldsymbol{n}\cdot(\boldsymbol{s}_2-\boldsymbol{s}_1)}{d_{12}}>\frac{d_{12}}2\right]
Pb=P[d12n⋅(s2−s1)>2d12]
或
P
b
=
P
[
n
⋅
(
s
2
−
s
1
)
>
d
12
2
2
]
P_b={P}\left[\boldsymbol{n}\cdot(\boldsymbol{s}_2-\boldsymbol{s}_1)>\frac{d_{12}^2}{2}\right]
Pb=P[n⋅(s2−s1)>2d122]
注意到
n
⋅
(
s
2
−
s
1
)
\boldsymbol{n}\cdot(\boldsymbol{s}_2-\boldsymbol{s}_1)
n⋅(s2−s1) 是零均值高斯随机变量,其方差为
d
12
2
N
0
/
2
d_{12}^2 N_0 /2
d122N0/2。因此可得
P
b
=
Q
(
d
12
2
2
d
12
N
0
2
)
=
Q
(
d
12
2
2
N
0
)
\begin{gathered} P_{b} =Q\left(\frac{\frac{d_{12}^2}{2}}{d_{12}\sqrt{\frac{N_0}{2}}}\right) \\ =Q\left(\sqrt{\frac{d_{12}^2}{2N_0}}\right) \end{gathered}
Pb=Q
d122N02d122
=Q
2N0d122
上式具有通用性,它适用于所有等概二进制信号传输系统,而不管信号的形状如何。因为
Q
(
⋅
)
Q(\cdot)
Q(⋅) 是递减函数,为了使差错概率最小,必须使信号之间的距离最大。距离
d
12
d_{12}
d12 为
d
12
2
=
∫
−
∞
∞
(
s
1
(
t
)
−
s
2
(
t
)
)
2
d
t
d_{12}^2=\int_{-\infty}^\infty\left(s_1(t)-s_2(t)\right)^2dt
d122=∫−∞∞(s1(t)−s2(t))2dt
在等概二进制信号且等能量(即
E
s
1
=
E
s
2
=
E
{\mathcal{E}_{s_1}}=\mathcal{E}_{s_2}=\mathcal{E}
Es1=Es2=E)的情况下,上式可展开为
d
12
2
=
E
s
1
+
E
s
2
−
2
⟨
s
1
(
t
)
,
s
2
(
t
)
⟩
=
2
E
(
1
−
ρ
)
d_{12}^2=\mathcal{E}_{s_1}+\mathcal{E}_{s_2}-2\langle s_1(t),s_2(t)\rangle=2\mathcal{E}(1-\rho)
d122=Es1+Es2−2⟨s1(t),s2(t)⟩=2E(1−ρ)
式中,
ρ
\rho
ρ 是
s
1
(
t
)
s_1(t)
s1(t) 与
s
2
(
t
)
s_2(t)
s2(t) 之间的互相关系数,
−
1
≤
ρ
≤
1
-1\leq\rho\leq1
−1≤ρ≤1 ,当
ρ
=
−
1
\rho=-1
ρ=−1 即双极性信号时二进制信号的距离最大,在这种情况下系统的差错概率最小。
四、最佳接收机的实现
4.1 匹配滤波器接收机与星座点
在最佳检测里推导出了最佳 MAP 判决规则
m
^
=
arg
max
1
≤
m
≤
M
[
η
m
+
r
⋅
s
m
]
,
η
m
=
N
0
2
ln
P
m
−
1
2
E
m
\begin{aligned} \hat{m}&=\arg\max_{1\leq m\leq M}\left[\eta_m+\boldsymbol{r}\cdot \boldsymbol{s}_m\right],\quad\eta_m=\frac{N_0}2\ln P_m-\frac12\mathcal{E}_m \end{aligned}
m^=arg1≤m≤Mmax[ηm+r⋅sm],ηm=2N0lnPm−21Em
求
r
⋅
s
m
\boldsymbol{r}\cdot \boldsymbol{s}_m
r⋅sm 可以通过多种方法,例如用相关的方法,接收机用每一个基函数
ϕ
j
(
t
)
{\phi}_j(t)
ϕj(t) 乘
r
(
t
)
r(t)
r(t) 再积分可以得到
r
\boldsymbol{r}
r 的全部份量,然后求
r
\boldsymbol{r}
r 与每一个
s
m
\boldsymbol{s}_m
sm 的内积;或者用等价的时域积分
∫
−
∞
∞
r
(
t
)
s
m
(
t
)
d
t
\int_{-\infty}^\infty r(t)s_m(t)dt
∫−∞∞r(t)sm(t)dt 。这两种方法中,都需要计算
r
x
=
∫
−
∞
∞
r
(
t
)
x
(
t
)
d
t
r_x=\int_{-\infty}^\infty r(t)x(t)dt
rx=∫−∞∞r(t)x(t)dt
式中,
x
(
t
)
x(t)
x(t) 是
ϕ
j
(
t
)
{\phi}_j(t)
ϕj(t) 或
s
m
(
t
)
{s}_m(t)
sm(t)。如果定义
h
(
t
)
=
x
(
T
−
t
)
h(t)=x(T-t)
h(t)=x(T−t),其中
T
T
T 为任意值,具有冲激响应
h
(
t
)
h(t)
h(t) 的滤波器称为匹配与
x
(
t
)
x(t)
x(t) 的滤波器或者匹配滤波器。如果该滤波器的输入为
r
(
t
)
r(t)
r(t) ,则其输出
y
(
t
)
y(t)
y(t) 为
r
(
t
)
r(t)
r(t) 与
h
(
t
)
h(t)
h(t) 的卷积,即
y
(
t
)
=
r
(
t
)
∗
h
(
t
)
=
∫
−
∞
∞
r
(
τ
)
h
(
t
−
τ
)
d
τ
=
∫
−
∞
∞
r
(
τ
)
x
(
T
−
t
+
τ
)
d
τ
\begin{aligned} y(t)& =r(t)* h(t) \\ &=\int_{-\infty}^\infty r(\tau)h(t-\tau)d\tau \\ &=\int_{-\infty}^\infty r(\tau)x(T-t+\tau)d\tau \end{aligned}
y(t)=r(t)∗h(t)=∫−∞∞r(τ)h(t−τ)dτ=∫−∞∞r(τ)x(T−t+τ)dτ
上式表明
r
x
=
y
(
T
)
=
∫
−
∞
∞
r
(
τ
)
x
(
τ
)
d
τ
r_x=y(T)=\int_{-\infty}^\infty r(\tau)x(\tau)\operatorname{d}\tau
rx=y(T)=∫−∞∞r(τ)x(τ)dτ
上式表明相关器的输出
r
x
r_x
rx 可以通过匹配滤波器再
t
=
T
t=T
t=T 时刻抽样得到。注意,抽样时刻必须准确的设置为
t
=
T
t=T
t=T ,其中
T
T
T 再匹配滤波器的设计中去任意值。只要满足这个条件,
T
T
T 的选择是不相关的;然而从实际的情况来看,
T
T
T 的选择原则是必须使滤波器符合因果关系,即当
t
<
0
t<0
t<0 时
h
(
t
)
=
0
h(t)=0
h(t)=0,这就要对
T
T
T 的可能取值加以限制。最佳接收机的匹配滤波器的实现如下图所示。
根据上述,接收机用每一个基函数 ϕ j ( t ) {\phi}_j(t) ϕj(t) 乘 r ( t ) r(t) r(t) 再积分可以得到 r \boldsymbol{r} r 的全部分量,再判断 r \boldsymbol{r} r 与哪个 s \boldsymbol{s} s 最近即可实现判决。
而对于IQ调制,通过IQ正交的设计已实现了分出 r \boldsymbol{r} r 的各个分量;通过成型滤波与接收滤波的设计,可以实现无码间串扰条件;在最佳抽样点抽样,可以实现抽样时刻的信噪比最大。