手把手教你申请计算机软件著作权(5)——— 信息补充(必看)

#悬崖上的花,越芬芳越无常

这个博客是我手把手教你申请计算机软件著作权的第5篇,写这个的原因是我前四篇博客写完之后,我身边的一些人申请软著的时候来咨询我一些问题,我回答之后发现之前写的还有一些遗漏,若是不补充一下,怕是算不算手把手教人申请,这是砸我招牌啊。

手把手教你申请软件著作权系列:
1.申请表填写
2. 生成代码文件和身份证明
3. 软件说明文档
4. 资料邮寄
5. 本文

——————————————————正文的分割线——————————————————
还是要声明一下,我的这个系列,针对的是有软著申请意向的在校学生,公司或者单位的申请可能会有些许偏差,请不要参考我的博客,以免造成错误。

1. 关于独立开发和合作开发的问题。
独立开发是指,整个软件著作权中,只有一个著作权人,这个著作权人享有对代码的全部权利,就是独立开发。
合作开发,就是在整个软著中,有两个及以上的著作权人,他们对各自的代码都享有权利。(有点复杂)
在我上网找的解释是这样的。

1、由两个以上的自然人、法人或者其他组织合作开发的软件,其著作权的归属由合作开发者签订书面合同约定。
2、如果共同完成开发的软件开发者无书面合同或者合同未作明确约定,合作开发的软件可以分割使用的,开发者对各自开发的部分可以单独享有著作权;但是,行使著作权时,不得扩展到合作开发的软件整体的著作权。
3、合作开发的软件不能分割使用的,其著作权由各合作开发者共同享有,通过协商一致行使;不能协商一致,又无正当理由的,任何一方不得阻止他方行使除转让权以外的其他权利,但是所得收益应当合理分配给所有合作开发者。

这里讲的有点复杂了,如果涉及商用系统的话,纠细节是一定的。对于在高校的我等来说,大可不必这么复杂。这里讲述一下学生申请软著的几种情况。
(1)自己写的代码,包括闲来无事写的,做项目写的,比赛写的,课程设计写的。如果是参与老师的项目,这个代码要团队申请,或者老师申请,请务必提前商议好,如果代码只有自己一个人写,请务必注意自己的权利。自己写的代码,最好自己是唯一著作权人或第一著作权人。
(2)自己和别人写的代码。比如多个人做的项目、课程设计和比赛。这个情况下,请大家商议好,是在一份软著里写多个著作权人,还是每个人那自己负责部分的代码申请软件著作权。这里涉及一个问题,有些学校对于软件著作权的学分加分是只看第一著作权人或第一第二著作权人的,这就比较麻烦。如果团队愿意,可以选出一个人来作为第一著作权人。如果要多个著作权人,必须要签署著作权人之间的合作开发协议(网上有模板),此处强调一个问题,请务必做好软件/代码的分工,在合作开发协议中分配好,以免后续的麻烦。
(3)自己写的代码,但是要加上朋友。有很多人愿意在申请软著的时候带上舍友,或者是比较好的朋友,那在申请表上必定有多位著作权人。如果要多个著作权人,必须要签署著作权人之间的合作开发协议(网上有模板),此处强调一个问题,因为这个除第一著作权人以外的著作权人是你顺上的,所以最好在合作开发协议中选择一些不那么重要的分工,避免可能出现的问题。

  1. 多个著作权人,请务必把所有著作权人的身份证复印件都邮寄过去,否则会被要求补正材料。

  2. 关于除代码以外但和软件息息相关的数据信息。
    这是一个比较尴尬的问题,刚好我最新申请的软著是一个关于图像加密的,这里面有一个用作加密的数学序列,这个东西严谨来说是不算做自己编写的代码的,但是如果没有这个序列,那么整个代码的意义就不是非常大。所以到最后我也没搞懂应该怎么申请,所以我问了很多身边拥有软著的人,关于这个问题,我的推荐是:
    将加密序列以n*n的格式打印出来,作为软件的附加文件提交,并在邮寄文件的时候附上说明,让版权保护中心决定它的去留。

我是这么写的:这份文件是xx软件的加密序列,每页有x个数据,共x页,数据量为x,对于软件有xx作用。如属于软件补充文件,请照常收录;如不需要,请直接丢弃。

因为我这个申请还没有消息,所以我显示这么写的,后续看情况补充。

  1. 嵌入式代码和FPGA代码申请上,软件说明文档的注意事项。
    (太困了,睡,改天再补。)
  • 4
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
YOLOv5是目标检测算法中的一种,通过训练自己的数据集可以实现对自定义目标的检测。下面是YOLOv5入门实践的步骤。 第一步,准备数据集。首先收集一些与你想要检测的目标相关的图像,确保图像中的目标已标注好边界框坐标。将图像和对应的标注文件放在数据集文件夹中。 第二步,配置运行环境。需要在计算机上安装Python环境,并根据YOLOv5的要求安装相应的库和依赖。可以通过pip或conda进行安装。 第三步,调整配置文件。YOLOv5提供了一个默认的配置文件,可以根据自己的需求进行修改。主要需要调整的是类别数量和路径配置。 第四步,划分训练集和验证集。将数据集中的图像和标注文件划分为训练集和验证集,一般可以按照70%的比例划分。 第五步,训练模型。在终端中运行训练命令,指定相关参数,如模型类型、数据集路径、训练集和验证集路径等。训练时可以选择使用预训练权重或从头开始。 第六步,评估模型。训练完成后,可以通过评估命令对模型进行评估,得到关于模型性能的指标,如精确度、召回率等。 第七步,使用模型进行目标检测。训练完成的模型可以用于检测自定义数据集中的目标。可以在终端中运行检测命令,指定相关参数,如模型路径、检测图像路径等。 通过以上步骤,我们可以进行YOLOv5的入门实践,训练自己的数据集,并使用训练好的模型进行目标检测。随着更多的实践和调优,可以提高模型性能和检测效果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值