Ubuntu装机系列

一、Chrome

Ubuntu安装Chrome浏览器

1.将下载源加入到系统的源列表

sudo wget http://www.linuxidc.com/files/repo/google-chrome.list -P /etc/apt/sources.list.d/

2.导入谷歌软件的公钥,用于下面步骤中对下载软件进行验证。命令完成的标识是输出OK

wget -q -O - https://dl.google.com/linux/linux_signing_key.pub | sudo apt-key add -

3.谷歌 Chrome 浏览器(稳定版)的安装

sudo apt-get install google-chrome-stable

在这里插入图片描述

三、设置sudo免密登陆

在这里插入图片描述
在文件末尾加入:

在这里插入图片描述

四、安装显卡驱动

ubuntu-drivers devices 查看显卡和可用驱动信息

在这里插入图片描述
输入该命令可以查看显卡信息,然后使用命令行安装,但是这里有更简单的方式:

打开控制台的 附加驱动,点击第一个安装即可(这里和上述recommended显示的是一样的)

在这里插入图片描述
安装成功后就能在控制台中找到 NVIDIA X SERVER了:

在这里插入图片描述
两条测试命令:

nvidia-smi

cat /proc/driver/nvidia/version

安装之后重新启动:

在这里插入图片描述
禁用Ubuntu自带的nouveau驱动:

在这里插入图片描述
参考链接:Ubuntu18.04 安装nvidia显卡驱动

再次测试,发现还是没有找到 nvidia 命令(噢 原来是忘记更新内核了)

sudo update-initramfs -u 更新内核

在这里插入图片描述
重新启动后,输入 lsmod | grep nouveau 没有其他信息输出,说明禁用成功

噗… 原来之前找不到nvidia 命令,是因为我多输了一个空格… 正确的命令是 nvidia-smi

在这里插入图片描述
至此,显卡驱动安装成功~

如果你想用其他方式,例如命令行下载、官网手动下载等,可以看看这个博客

如果之前有安装驱动,则需要使用sudo apt-get purge nvidia* 先卸载,再安装。

查看显卡信息

nvidia-smi -L

在这里插入图片描述

五、更新系统中的软件包

sudo apt update
sudo apt upgrade

六、Python

一个很棒很详细的参考链接:个人深度学习工作站配置指南

本来说linx系统一般都自带python2,但是我在Terminal里看了一下,但是没找到… 但是它又存在目录… (我不理解)
在这里插入图片描述那就装呗~ sudo apt install python3

在这里插入图片描述
噢哦~ 但是你会看到这个安装失败,因为已经是最新版本 python3.8.2 啦,说明可能 Ubuntu20.04 自带的是新的 python3 呀

七、Vim

想要使用Vim的时候,突然发现 还没装它… sudo apt-get install vim

在这里插入图片描述

八、Anaconda

可以从 清华镜像源 下载,也可以从官网下载…(但是我从官网下载的失败了…所以我用清华源啦)
在这里插入图片描述进入下载目录,用 Terminal 打开 输入命令: bash Anaconda3-2021.11-Linux-x86_64.sh

在这里插入图片描述
然后就是让你选择安装路径咯~
在这里插入图片描述
安装完成之后,它又会问你是否选择初始化:
在这里插入图片描述
关于 Yes/No 的选择,可以参考:Linux安装anaconda3是否初始化的区别

在这里插入图片描述
(如果没选yes,我这里就不需要了) 或许最后可以考虑一下要不要 更改python的默认路径为anaconda的python版本,可以通过以下方式进行:

echo 'export PATH="~/anaconda3/bin":$PATH' >> ~/.bashrcpyth
source ~/.bashrc

在这里插入图片描述

进入Anaconda图形界面的方式

source ~/anaconda3/bin/activate root
anaconda-navigator

使用 nautilus /usr/local/cuda/bin 打开指定路径文件夹窗口

九、CUDA

使用 nvcc -V查看cuda 安装是否成功的时候,如果显示 没有nvcc,建议apt install nvidia-cuda-toolkit ,千万别动啊…它会给你重装驱动乱来的…(还好我因为不确定自动下载的cuda是什么版本而去百度了一下…看到了这个 避坑指南

NVIDIA官网 选择合适版本的 CUDA 安装包

注意: CUDA版本和显卡驱动版本要适配,从 这里可以找到匹配的对应版本
在这里插入图片描述
而我们的驱动是 470.86 ,再考虑到安装的pytorch版本,我们最终选择 CUDA 11.3
在这里插入图片描述

$ wget https://developer.download.nvidia.com/compute/cuda/11.3.0/local_installers/cuda_11.3.0_465.19.01_linux.run
$ sudo sh cuda_11.3.0_465.19.01_linux.run

它会问你要不要摧毁之前安装的Driver重装… 当然不要啊QAQ 选择 continue 跳过
在这里插入图片描述
之后会出现一个如这个博客中所示的选项,要把Driver里那个 X 去掉(选中 Driver 按以下 回车 就可以了),表示不安装Driver,我这里显示它想装465(也就是 CUDA 11.3 之前版本默认对应里的那个) X 表示 execute安装

安装成功后会出现这个:

在这里插入图片描述
根据上面的Please make sure that… 巴拉巴拉…你需要配置环境变量…

nano  ~/.bashrc

进入之后,在文件末尾加入:

export CUDA_HOME=/usr/local/cuda-11.3
export LD_LIBRARY_PATH=${CUDA_HOME}/lib64
export PATH=${CUDA_HOME}/bin:${PATH}

在这里插入图片描述
回到命令行之后,使其生效输入:

source ~/.bashrc

使用 nvcc -V 查看安装的版本信息,即可验证安装成功:
在这里插入图片描述

十、在Conda中添加镜像源

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
conda config --set show_channel_urls yes #从channel中安装包时是否显示channel的url

在这里插入图片描述

1.查看当前已经添加的镜像源

conda config --show-sources

2.镜像源添加

conda config --add channels http....

3.镜像源删除

conda config --remove channels http...

十一、在虚拟环境Workspace中安装Pytorch

1.建立虚拟环境 Workspace

相比于命令行方式,我还是更喜欢在图形界面建立虚拟环境…(这里可选的最高版本是3.10.0)
在这里插入图片描述
成功之后,输入 conda info --envs 可查看当前环境信息:

在这里插入图片描述

2.进入PyTorch官网,查看相应版本下载命令:

先进入一下 workspace 看一看镜像源:(之前在base下添加成功之后,所有的env都会有同样的镜像源)
在这里插入图片描述


在这里插入图片描述
得到安装命令:(安装失败了…出现了不兼容的问题… 可是我? 版本都对应上了啊???)

conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch

在这里插入图片描述试一试pip吧…QAQ

pip3 install torch==1.10.1+cu113 torchvision==0.11.2+cu113 torchaudio==0.10.1+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html

在这里插入图片描述找不到版本对应… 人麻了… 明明是按照官网命令配置来的啊…

解决could not find a version that satisfies the requirement torch等类似问题

参考以上解决方案,我去看了看 pytorch whl下载地址 看了看… 发现好像没有python3.10版本… 难道这个虚拟环境必须得是3.9 ?OK…那我去换一下python再来试…
在这里插入图片描述
换成了 python3.9.9 再次尝试上述命令:
在这里插入图片描述可以安装了… 好家伙… 确实是python版本的问题… 后面就静待下载完成啦
在这里插入图片描述

3. 验证pytorch安装成功
import torch
print(torch.__version__)
print(torch.version.cuda)
# print(torch.backends.cudnn.version()) # 如果安装了cuDNN
print(torch.cuda.is_available())

在这里插入图片描述
ctrl + D 可以退出python,回到命令行

参考链接:pytorch版本和GPU版本不对应问题

十二、VScode

1. 首先进入VScode官网下载相应 .deb文件
2. 进入该文件所在文件夹,用终端打开,输入以下命令进行安装
sudo dpkg -i code_1.63.2-1639562499_amd64.deb

在这里插入图片描述

3. 安装VScode所需依赖(这里仿佛是没有的)
sudo apt-get install -f

在这里插入图片描述

4.插件配置

最重要的可用于远程的插件:Remote Development

十三、Matlab

ubuntu20.04安装matlab2021b/matlab2020b

在启动台创建快捷方式:

# 下载图标
udo wget http://upload.wikimedia.org/wikipedia/commons/2/21/Matlab_Logo.png -O /usr/share/icons/matlab.png
# 新建快捷方式
sudo touch /usr/share/applications/matlab.desktop
# 修改快捷方式
sudo gedit /usr/share/applications/matlab.desktop

写入: Exc= 后跟matlab启动路径 Icon=后跟图表位置,保存后退出即可

[Desktop Entry]
Categories=Application;Development;
Comment=Matlab
Encoding=UTF-8
Exec=/home/paper/Matlab/bin/matlab -desktop -prefersoftwareopengl
Icon=/usr/share/icons/matlab.png
Name=MATLAB
StartupNotify=true
Terminal=false #在启动matlab时不启动终端
Type=Application

参考链接:Ubuntu 18.04安装Matlab 2016b教程(附创建图标快捷方式)

在ubuntu16.04上创建matlab的快捷方式

一些看过的参考链接

保姆级教程】个人深度学习工作站配置指南

配置ubuntu20.04+anaconda+pytorch+ssh+win10+vscode远程深度学习训练环境

Ubuntu20.04中anaconda3、VScode等常用环境的安装(包括anaconda、vscode插件、g++等)

pytorch+cuda11.1+anaconda3+vscode安装

十四、向日葵

进入官网下载 图形版本

# 解决依赖问题
sudo gedit  /etc/apt/source.list 
# 复制 deb http://cz.archive.ubuntu.com/ubuntu bionic main universe 进去
sudo apt-get update
sudo apt-get install -f
# 安装
sudo dpkg -i SunloginClient_11.0.1.44968_amd64.deb

卸载

sudo dpkg -l | grep sunlogin
sudo dpkg -r sunloginclient
# 查看是否卸载完成
sudo /usr/local/sunlogin/bin/sunloginclient
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值