在类之间建立超平面决策边界的情况下,线性,多项式和RBF或高斯核完全不同。
内核函数用于将原始数据集(线性/非线性)映射到更高维的空间,以使其成为线性数据集。
通常,线性和多项式内核比RBF或高斯内核耗时少,并且提供的精度也较低。
k个交叉验证用于将训练集划分为k个不同的子集。 然后,在整个训练阶段,将每个子集用于训练,将其他k-1用于验证。 这样做是为了更好地训练分类任务。
线性核就是您所期望的线性模型。 我相信多项式核是相似的,但是边界是某些已定义但任意顺序的。
RBF在数据点周围使用法线曲线,并对它们进行求和,以便可以通过一种拓扑条件(例如总和值大于0.5的曲线)定义决策边界。