线性核与RBF核的区别

在类之间建立超平面决策边界的情况下,线性,多项式和RBF或高斯核完全不同。

内核函数用于将原始数据集(线性/非线性)映射到更高维的空间,以使其成为线性数据集。

通常,线性和多项式内核比RBF或高斯内核耗时少,并且提供的精度也较低。

k个交叉验证用于将训练集划分为k个不同的子集。 然后,在整个训练阶段,将每个子集用于训练,将其他k-1用于验证。 这样做是为了更好地训练分类任务。

线性核就是您所期望的线性模型。 我相信多项式核是相似的,但是边界是某些已定义但任意顺序的。

RBF在数据点周围使用法线曲线,并对它们进行求和,以便可以通过一种拓扑条件(例如总和值大于0.5的曲线)定义决策边界。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值