算法学习(八)——排序算法汇总


注:完整代码请参见我的Github

Github链接

前言

排序也称排序算法(Sort Algorithm), 排序是将一组数据, 依指定的顺序进行排列的过程


一、排序的分类

1、内部排序
指将需要处理的所有数据都加载到内部存储器(内存)中进行排序,这是程序员一般需要掌握的,也是面试中最常问到的一块。
2、外部排序
数据量过大, 无法全部加载到内存中, 需要借助外部存储(文件等)进行排序
3、常见的排序分类算法(见下图)

在这里插入图片描述

下面跟着我一起学习这八大排序算法吧!

二、算法学习

1.冒泡排序(bubble sort)

冒泡排序是排序算法中交换排序的一种,顾名思义,需要将数据进行交换,且像气泡进行大小比较,具体思想(以从小到大排序为例)就是:

  1. 依次每个位置和后一个位置的数值大小,将较大的一方交换到后面,依次循环重复。

  2. 循环第一遍之后,最大的数应该在序列的最后,将其固定。

  3. 然后进行重新的循环,将第二大的数冒泡排在序列的倒数第二位置。

  4. 循环往复,直至将所有数循环完毕。

其实这里的停止条件可以更加合理一些,就是发现排列一遍,没有任何两个元素位置发生交换,此时就可断定排列完毕,停止循环。这也是代码的优化部分。

冒泡排序代码

代码如下(优化后的):

public static void bubbleSortPro(int[] arr){
		int temp = 0;
		int i = 1;
		boolean flag = false;//标识,是否进行过交换
		while(i < arr.length - 1){
			for(int j = 0; j <arr.length - i; j++){
				//如果前面的数比后面的数大,则交换
				if(arr[j] > arr[j+1]){
					flag = true;
					temp = arr[j+1];
					arr[j+1] = arr[j];
					arr[j] = temp;
				}
			}
			System.out.printf("第%d次排序后的数组",i);
			System.out.println(Arrays.toString(arr));
			i++;
			if(flag == false){//表示在当前次排序过程中未进行位置交换
				break;
			}else {
				flag = false;//重置flag
			}
		}

2.简单选择排序

选择排序是内部排序的常见的一种,这里先介绍简单选择排序,它与冒泡排序类似,都是在循环中进行比较,不同的是选择排序交换次数较少,这点在算法运行速度上可以看出(80000个随机数的排序冒泡法需要12s,而选择排序需要8s)

以从小到大顺序为例,选择排序的具体思路是:

  1. 对整个序列进行一次循环,找出其中的最小值,让最小值与序列第一个数进行交换,这样就让序列的第一个数是序列的最小值了
  2. 再对序列除去第一个数以外的所有值进行循环,找出第二小的值,与序列第二个位置的数进行交换,使第二小的值在它应该的位置
  3. 以此循环,知道循环n-1次,n是序列元素个数

简单选择排序代码

//选择排序方法封装
	public static void selectSort(int[] arr) {
		int temp = 0;//辅助指针,保存最小值
		int index = 0;//保存交换发生的位置
		int i = 0;
		while(i < arr.length - 1){
			temp = arr[i];
			index = i;
			for(int j = i+1; j < arr.length; j++){
				if(arr[j] < temp){
					temp = arr[j];
					index = j;
				}
			}
			if(index != i) {
				arr[index] = arr[i];
				arr[i] = temp;
			}
			i++;
		}
	}

其实算法的学习往往是一个从简单到复杂的过程,对于一个思路清晰的 算法,应当先从简单的步骤进行编写,最后进行整合。排序算法就是一个例子,应当一步一步进行代码分析,最后形成一个方法。

3.直接插入排序

插入排序是内部排序的又一大类,这里首先解释一个相对好理解的直接插入排序,其算法思路非常简单,将想要排序 的元素以插入的形式寻找该元素合适的位置,从而到达排序的目的。

图解如下:
在这里插入图片描述
算法的要点就是,要保证序列前端(也就是已经排好的部分)是有序的,这样后续加入的元素可以进行搜索,找到小于它(待插入元素) 的元素位置j,即可知道要插入的位置就是j+1.

直接插入排序代码

代码整理如下:

public static void insertSort(int[] arr) {
		int insertValue;//定义待插入元素
		for(int index = 0; index < arr.length - 1; index++) {//依次加入元素
			insertValue = arr[index+1];//待插入元素
			//数组不越界		且已筛选的元素均大与insertValue,位置不合适
			while(index >= 0 && insertValue < arr[index]){
				arr[index+1] = arr[index];
				index--;
			}
			if(index + 1 != i){//判断是否需要进行交换
				//当退出while循环,插入位置找到	index+1这个位置
				arr[index + 1] = insertValue;
			}
		}
	}

从直接插入排序的思路不难看出,当有一个数较小且在队列最后时,需要交换的次数会很多,这也是该算法的一个缺陷。下面对其进行改进。

4.希尔排序

前面所说的直接插入算法由于存在频繁交换,导致速度并不是很快(80000个随机数排序时间10s左右),因为有人提出希尔排序算法,速度直接秒杀(不到1秒)。
下面来一起学习一下吧!

首先希尔排序的思想是逐步缩小增量,因此也叫缩小增量排序

希尔排序是把记录按下标的一定增量分组, 对每组使用直接插入排序算法排序; 随着增量逐渐减少, 每组包含的关键词越来越多, 当增量减至 1 时, 整个文件恰被分成一组, 算法便终止

如下图所示,首先将原始数组按两个相距步长是5 的元素进行分组(10/2),共分成了5组。然后对组内元素按大小顺序进行冒泡排序。
交换完毕之后,再将数组按(10/2/2 = 2)进行分组,也就是步长为2分程两组,再次在组内进行冒泡排序。依次类推,直到原始数组不能再进行拆分,即为最后一次排序,得到排序结果。
在这里插入图片描述
上述思路实现过程如下(交换式希尔排序):

public static void shellSort(int[] arr) {
		int temp = 0;
		for(int gap = arr.length / 2; gap > 0; gap /= 2){
			//将数据分成了gap组
			for(int i = gap; i < arr.length; i++){
				//遍历每一组元素
				for(int j = i - gap; j >= 0; j -= gap){
					//如果当前元素大于组内后一个元素,则需要交换
					if(arr[j] > arr[j + gap]){
						temp = arr[j];
						arr[j] = arr[j + gap];
						arr[j + gap] = temp;
					}
				}
			}
		}
	}

作为插入排序的一种,上述过程相比于直接插入排序,最明显的就是减少了for循环的次数,由于是采用了缩小增量的方法,进行一个分组排序,显然要比每一个都执行一边for循环来的快。但事实呢,由于上述代码采用了希尔+冒泡排序,导致在大量数据时会存在频繁交换,因此时间上并没有改观。因此,传闻中这么猛的希尔排序不是这么用的,这样一个例子只是为了理清思路。

希尔排序代码

将希尔排序的缩小增量思想和插入排序结合起来,就达到了我们的目的
代码如下:(移位式希尔排序)

//对交换式的希尔排序算法进行改进---->移位式
	public static void shellSort2(int[] arr) {
		int temp = 0;
		//增量gap,并逐步缩小增量
		for(int gap = arr.length / 2; gap > 0; gap /= 2) {
			for(int i = gap; i < arr.length; i ++) {
				int j = i;
				temp = arr[j];
				if(arr[j] < arr[j - gap]) {
					while(j - gap >= 0 && temp < arr[j - gap]) {
						//移动
						arr[j] = arr[j - gap];
						j -= gap;
					}
					//当退出while循环后,就找到了temp插入的位置
					arr[j] = temp;
				}
			}
		}
	}

牛吧!移位式快就快在只把待插入元素放在正确的位置,而不需要像交换式的冒泡排序一样,频繁的对所有元素进行位置交换。

5.快速排序

这个排序算法是我最喜欢的之一,因为他的思想相当优美。
我想以图解的形式来展示快速排序的思想
在这里插入图片描述
快速排序将数组经过不断的递归,最后收敛条件就是输入到算法里 的元素个数不再需要排序,即一个元素就本身是一个顺序。如果还不理解请看代码,代码一介绍一个详细的思路,代码二结束一个简捷的写法。

快速排序代码1

这个的实现思路是

  1. 借助左右两个指针,首先将左指针指向数组开头,右指针指向数组结尾,将中轴值指向数组中间的元素。
  2. 左边指针小于右边时,就进行循环交换
  3. 将左指针逐步右移,在中轴值左边寻找一个比它大的值,找到之后停止移动记录位置
  4. 将右指针逐步左移,在中轴值右边寻找一个比它小的值,找到之后停止移动记录位置
  5. 移动指针之后,如果发现左指针大于等于右指针了,则满足退出条件
  6. 否则执行交换,即即左右指针所指元素互相交换
  7. 这里还需要判断一下指针位置,如果和中轴值重复,则需要人为移动一下
  8. 然后执行递归,分别对左边和右边执行上述3、4、5、6、7步
public static void quickSort(int[] arr, int left, int right) {
		int l = left;//左下标
		int r = right;//右下标
		//pivot中轴值
		int pivot = arr[(left+right)/2];
		int temp = 0;
		//while循环的目的是把	比pivot小的放在左边
		while(l < r){
			//在pivot左边一直找,找到大于pivot的值才退出
			while(arr[l] < pivot){
				l += 1;
			}
			//在pivot右边一直找,找到小于等于pivot的值才退出
			while(arr[r] > pivot){
				r -= 1;
			}
			
			//满足l>=r说明pivot左右已经满足条件
			if(l >= r) {
				break;
			}
			
			//交换
			temp = arr[l];
			arr[l] = arr[r];
			arr[r] = temp;
			
			//如果交换完后,发现arr[l] == pivot,r向后移
			if(arr[l] == pivot){
				r--;
			}
			//如果交换完后,发现arr[r] == pivot,l向前移
			if(arr[r] == pivot){
				l++;
			}
		}
		
		//如果 l == r,一定要l++,r--,否则会栈溢出
		if(l == r){
			l++;
			r--;
		}
		//向左递归
		if(left < r){
			quickSort(arr, left, r);
		}
		//向右递归
		if(right > l){
			quickSort(arr, l, right);
		}
	}

快速排序代码2

由于上述代码冗余,介绍一个使用Arraylist写的方法,仅使用6行就能代替上述程序中多个while循环。递归时创建新的Arraylist,然后执行同样的方法,最后使用merge合并两个数组

public static ArrayList<Integer> quickSort2(ArrayList<Integer> arr){
		ArrayList<Integer> left = new ArrayList<Integer>();
		ArrayList<Integer> right = new ArrayList<Integer>();
		int pivot = 0;
		
		if(arr.size() < 2){
			return arr;
		} else {
			pivot = arr.get(0);
			for(int i = 1; i < arr.size(); i++){
				if(arr.get(i) < pivot){
					left.add(arr.get(i));
				} else {
					right.add(arr.get(i));
				}
			}
		}
		ArrayList<Integer> left1 = quickSort2(left);
		left1.add(pivot);
		ArrayList<Integer> right2 = quickSort2(right);

		ArrayList<Integer> merge = new ArrayList<Integer>();
		merge.addAll(left1);
		merge.addAll(right2);
		
		return merge;

	}

6.归并排序算法

算法介绍:
归并排序(MERGE-SORT) 是利用归并的思想实现的排序方法, 该算法采用经典的分治(divide-and-conquer)策略(分治法将问题分(divide)成一些小的问题然后递归求解, 而治(conquer)的阶段则将分的阶段得到的各答案"修补"在一起, 即分而治之)。

归并排序思想图解如下:
在这里插入图片描述

分为分和治两个部分:
分:将数据串按从中切割的方法,拆成左右两个部分。
治:将拆好的部分,按顺序在排列起来

治的部分图解如下:
在这里插入图片描述
这里举例的是最后一步,就是经过了倒数第二步拼接,得到“4,5,7,8,1,2,3,4,6”,将其最后转变成有序数组的例子。由于经过了前面的步骤,可以保证前面四个数是有序的,后面四个数是有序的,因此不同于普通无序数组。这里好好思考

因此分治算法的优势就体现出来了,下面请看代码

//分+合方法
	public static void mergeSort(int[] arr, int left, int right, int[] temp){
		if(left < right) {
			int mid = (left + right) / 2;
			//左递归
			mergeSort(arr, left, mid, temp);
			//右递归
			mergeSort(arr, mid+1, right, temp);
			//合并
			//这里左递归和右递归的结果也都要进行合并,为的是保证分块的有序
			merge(arr, left, mid, right, temp);
		}
	}
	
	//合并的方法
	/**
	 * 
	 * @param arr		排序数組
	 * @param left		左边索引
	 * @param mid		中间索引
	 * @param right		右边索引
	 * @param temp		中转数组
	 */
	public static void merge(int[] arr, int left, int mid, int right, int[] temp){
		int i = left;//初始化i,左边有序序列的初始索引
		int j = mid + 1;//初始化j,右边有序序列的初始索引
		int t =0;//指向temp的当前指针
		//(1)
		//将两边数组按规则依次填充到temp中
		//直到有一边序列处理完毕
		while(i <= mid & j <= right){
			if(arr[i] <= arr[j]) {
				temp[t] = arr[i];
				i++;
			}else{
				temp[t] = arr[j];
				j++;
			}
			t++;
		}
		
		//(2)
		//把有剩余的一边再依次拷贝到temp
		while(i <= mid){//左边剩余
			temp[t] = arr[i];
			t++;
			i++;
		}
		
		while(j <= right){//右边剩余
			temp[t] = arr[j];
			t++;
			j++;
		}
		//(3)
		//将temp拷贝到arr
		//注意,并不是每次都拷贝所有
		t = 0;
		int tempLeft = left;
		//这里好好思考
		//表达为:逐个进行拷贝
		System.out.println("tempLeft = "+tempLeft+ "right = "+right);
		while(tempLeft <= right) {
			arr[tempLeft] = temp[t];
			t++;
			tempLeft++;
		}
		System.out.println(Arrays.toString(arr));
	}

}

下面请看分治的过程

  1. 拆开到8和4时进行了一步合并,也就是得到了4、8的有序排列,其他没变
  2. 拆开到5和7时进行了一步合并,也就是得到了5、7的有序排列,其他没变
  3. 然后进行了4,8,5,7的合并,得到了4,5,7,8的有序排列

省略一部分,自己体会一下吧

在这里插入图片描述

7.基数排序(桶排序)

  1. 基数排序(radix sort) 属于“分配式排序” (distribution sort) , 又称“桶子法” (bucket
    sort) 或 bin sort, 顾名思义, 它是通过键值的各个位的值, 将要排序的元素分配至某些“桶” 中, 达到排序的作用
  2. 基数排序法是属于稳定性的排序, 基数排序法的是效率高的稳定性排序法
  3. 基数排序(Radix Sort)是桶排序的扩展

基数排序的基本思想:
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

基数排序代码实现

// 基数排序方法(空间换时间的经典算法)
	public static void redixSort(int[] arr) {
		// 根据前面的推导,实现基数排序方法
		// 定义一个二维数组,表示十个桶,每一个桶就是一个一维数组
		// 10个桶,每个桶容量要保证不会溢出,因此内存消耗很大

		int[][] bucket = new int[10][arr.length];

		// 为了记录每个桶的实际存放数据
		// 定义一个一维数组,记录每个桶的数据个数
		int[] bucketCount = new int[10];

		// 首先找到数组中最大的数
		int max = arr[0];
		for (int i = 0; i < arr.length; i++) {
			if (arr[i] > max) {
				max = arr[i];
			}
		}

		// 得到最大数的位数
		int maxLength = (max + "").length();
		// 开始执行基数排序
		int index = 0;
		for (int i = 1, n = 1; i < maxLength; i++, n *= 10) {
			for (int j = 0; j < arr.length; j++) {
				// 取出每个元素的对应位数值
				int digitElement = arr[j] / n % 10;
				// 放入到对应的桶中
				bucket[digitElement][bucketCount[digitElement]] = arr[j];
				bucketCount[digitElement] += 1;
			}

			// 按桶的顺序取出元素,并放回原数组
			index = 0;
			for (int k = 0; k < 10; k++) {
				// 检查桶中是否有数据
				if (bucketCount[k] > 0) {
					// 循环第k个桶,进行取数
					for (int l = 0; l < bucketCount[k]; l++) {
						arr[index] = bucket[k][l];
						index++;
					}
				}
				// 需要将处理后的桶清零
				bucketCount[k] = 0;
			}
		}

	}

8.堆排序

堆排序是一种选择排序,它的最坏,最好,平均时间复杂度均为O(nlogn),它也是不稳定排序。堆排序是利用了二叉树这种数据结构,简单了解一下堆:

堆是具有以下性质的完全二叉树:每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆;或者每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆。如下图:

在这里插入图片描述
堆排序的基本思想:
将待排序序列构造成一个大顶堆,此时,整个序列的最大值就是堆顶的根节点。将其与末尾元素进行交换,此时末尾就为最大值。然后将剩余n-1个元素重新构造成一个堆,这样会得到n个元素的次小值。如此反复执行,便能得到一个有序序列了
实现思路如下:

步骤一: 构造初始堆。将给定无序序列构造成一个大顶堆(一般升序采用大顶堆,降序采用小顶堆)。

  1. 假设给定的无序序列结构如下
    在这里插入图片描述
  2. 此时我们从最后一个非叶子结点开始(叶结点自然不用调整,第一个非叶子结点arr.length/2-1=5/2-1=1,也就是下面的6结点),从左至右,从下至上进行调整。
    在这里插入图片描述
  3. 找到第二个非叶节点4,由于[4,9,8]中9元素最大,4和9交换。
    在这里插入图片描述

这时,交换导致了子根[4,5,6]结构混乱,继续调整,[4,5,6]中6最大,交换4和6。

在这里插入图片描述
此时,我们就将一个无需序列构造成了一个大顶堆。

步骤二 将堆顶元素与末尾元素进行交换,使末尾元素最大。然后继续调整堆,再将堆顶元素与末尾元素交换,得到第二大元素。如此反复进行交换、重建、交换。

堆排序代码实现

//堆排序方法
	public static void heapSort(int[] arr) {
		int temp = 0;
		
		//分部完成
//		adjustHeap(arr, 1, arr.length);
//		System.out.println("第一次" + Arrays.toString(arr));
//		adjustHeap(arr, 0, arr.length);
//		System.out.println("第二次" + Arrays.toString(arr));
		
		//构造大顶堆
		for(int i = arr.length / 2 - 1; i >= 0; i--){
			adjustHeap(arr, i, arr.length);
		}
		
		//交换、重新调整
		for(int j = arr.length - 1; j > 0; j--) {
			temp = arr[j];
			arr[j] = arr[0]; 
			arr[0] = temp;
			adjustHeap(arr, 0, j);
		}
		System.out.println("最后结果" + Arrays.toString(arr));
	}
	
	//将一个顺序存储数组(二叉树)调整成大顶堆
	/**
	 * 
	 * @param arr		待调整数组
	 * @param i			非叶子节点在数组中的索引
	 * @param length	表示对多少个元素进行调整 是逐渐减少的
	 */
	public static void adjustHeap(int[] arr,  int i, int length) {
		int temp = arr[i];
		//开始调整
		//k = i * 2 + 1是i的左子节点
		for(int k = i * 2 + 1; k < length; k = k * 2 + 1) {
			if(k + 1 < length && arr[k] < arr[k+1]) {//说明左子节点小于右子节点	 
				k++;//k指向右子节点 	
			}
			if(arr[k] > temp) {
				arr[i] = arr[k];
				i = k;//!!i指向k。继续循环比较
			} else{
				break;
			}
		}
		//当for循环结束后 已经将以i为父节点的树的最大值,放在了顶部(局部)
		arr[i] = temp;
	}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值