朴素贝叶斯算法
- 概率基础
- 概率定义为一件事情发生的可能性
联合概率和条件gail - 联合概率:包含多个条件,且所有条件同时成立的概率
- 记作;P(A,B) P(A,B)=P(A)* P(B)
- 条件概率:就是事件A在另一个事件B已经发生条件下发生的概率
- 记作:P(A|B)
- 特性:P(A1,A2|B)=P(A1|B)+(A2|B)
- 注意:此条件概率的成立,是由于A1,A2相互独立的结果
朴素贝叶斯公式
注:w为给定文档的特征值(频数统计,预测文档提供),c为文档类别
公式可理解为:
拉普拉斯平滑
问题:如果某个分类概率为0,这是不合理的,如果词频列表里有很多出现次数为零,很可能计算结果为0
解决方法:拉普拉斯平滑系数
P(F1|D)=Ni+a/N+am
a为指定的系数一般为1,m为训练文档中统计
出的特征词个数
朴素贝叶斯实现API
- sklearn.native_bayes_MultinomiaINB
- sklearn.native_bayes_MultinomiaINB(alpha=1.0)
- 朴素贝叶斯分类
- alpha:拉普拉斯平滑系数 防止分类时类别概率为0