朴素贝叶斯算法(原理)

朴素贝叶斯算法

  1. 概率基础
  • 概率定义为一件事情发生的可能性
    联合概率和条件gail
  • 联合概率:包含多个条件,且所有条件同时成立的概率
  • 记作;P(A,B) P(A,B)=P(A)* P(B)
  • 条件概率:就是事件A在另一个事件B已经发生条件下发生的概率
  • 记作:P(A|B)
  • 特性:P(A1,A2|B)=P(A1|B)+(A2|B)
  • 注意:此条件概率的成立,是由于A1,A2相互独立的结果

朴素贝叶斯公式

公式
注:w为给定文档的特征值(频数统计,预测文档提供),c为文档类别
公式可理解为:
在这里插入图片描述

拉普拉斯平滑

问题:如果某个分类概率为0,这是不合理的,如果词频列表里有很多出现次数为零,很可能计算结果为0

解决方法:拉普拉斯平滑系数
P(F1|D)=Ni+a/N+am

a为指定的系数一般为1,m为训练文档中统计
出的特征词个数

朴素贝叶斯实现API

  • sklearn.native_bayes_MultinomiaINB
  • sklearn.native_bayes_MultinomiaINB(alpha=1.0)
  • 朴素贝叶斯分类
  • alpha:拉普拉斯平滑系数 防止分类时类别概率为0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值