【信号与系统】指数信号与正弦信号

信号与系统系列学习笔记:

【信号与系统】线性时不变系统

1. 连续时间复指数信号与正弦信号

连续时间复指数信号的形式为

x ( t ) = C e a t (1.1) x(t) = Ce^{at}\tag{1.1} x(t)=Ceat(1.1)

其中, C C C a a a一般为复数。根据参数类型的不同,复指数信号可以有几种不同特征。

1.1 实指数信号

C C C a a a均为实数,则 x ( t ) x(t) x(t)为实指数信号,也就是我们高中所学的简单的指数函数。若 a > 0 a>0 a>0,则 x ( t ) x(t) x(t) t t t的增加而呈指数增长;若 a < 0 a < 0 a<0,则 x ( t ) x(t) x(t) t t t的增加而呈指数衰减。

1.2 周期复指数信号与正弦信号

1.2.1 周期复指数信号

a a a为纯虚数,则 x ( t ) x(t) x(t)为复指数信号,可写为

x ( t ) = e j ω 0 t (1.2) x(t)=e^{j\omega_0t}\tag{1.2} x(t)=ejω0t(1.2)

该信号对任意 ω 0 \omega_0 ω0都是周期的,其基波周期为

T 0 = 2 π ∣ ω 0 ∣ (1.3) T_0 = \frac{2\pi}{\mid\omega_0\mid}\tag{1.3} T0=ω02π(1.3)

证明:
x ( t ) x(t) x(t)为周期的,则存在 T T T,使得 e j ω 0 t = e j ω 0 ( t + T ) e^{j\omega_0t}=e^{j\omega_0(t+T)} ejω0t=ejω0(t+T)对任意 t t t成立,简单化简可得 e j ω 0 T = 1 e^{j\omega_0T} = 1 ejω0T=1
ω 0 = 0 \omega_0 = 0 ω0=0,则 x ( t ) = 1 x(t)=1 x(t)=1,此时 T T T为任意值;
ω 0 ≠ 0 \omega_0\neq0 ω0=0,则 T = k 2 π ω 0 ( k = 0 , ± 1 , ± 2 , . . . ) T = k\frac{2\pi}{\omega_0}(k=0,\pm1,\pm2,...) T=kω02π(k=0,±1,±2,...),因此基波周期为 T 0 = 2 π ∣ ω 0 ∣ T_0 = \frac{2\pi}{\mid\omega_0\mid} T0=ω02π

2.1.2 谐波信号

一组成谐波关系(harmonically related)的复指数信号具有公共周期 T 0 T_0 T0,其基波频率是某一正频率 ω 0 \omega_0 ω0的整数倍,即

ϕ k ( t ) = e j k ω 0 t , k = 0 , ± 1 , ± 2 , . . . (1.4) \phi_k(t)=e^{jk\omega_0t},\quad k=0,\pm1,\pm2,...\tag{1.4} ϕk(t)=ejkω0t,k=0,±1,±2,...(1.4)

基波频率为 ∣ k ∣ ω 0 |k|\omega_0 kω0,基波周期为 T 0 / ∣ k ∣ T_0/|k| T0/∣k

2.1.3 正弦信号

正弦信号是一种与周期复指数信号密切相关的信号,可写为

x ( t ) = A cos ⁡ ( ω 0 t + ϕ ) (1.5) x(t) = A\cos(\omega_0t+\phi)\tag{1.5} x(t)=Acos(ω0t+ϕ)(1.5)

其中,若 t t t的单位为秒,则 ϕ \phi ϕ的单位为弧度, ω 0 \omega_0 ω0的单位为rad/s。角频率 ω 0 = 2 π f \omega_0=2\pi f ω0=2πf f f f的单位为Hz。

正弦信号为周期信号,其基波周期为 T 0 = 2 π / ω 0 = 1 / f T_0 = 2\pi/\omega_0=1/f T0=2π/ω0=1/f

利用欧拉关系,复指数信号可写为

e j ω 0 t = cos ⁡ ( ω 0 t ) + j sin ⁡ ( ω 0 t ) (1.6) e^{j\omega_0t} = \cos(\omega_0t) + j\sin(\omega_0t)\tag{1.6} ejω0t=cos(ω0t)+jsin(ω0t)(1.6)

而正弦信号也可改写为

A cos ⁡ ( ω 0 t + ϕ ) = A 2 e j ϕ e j ω 0 t + A 2 e − j ϕ e − j ω 0 t = A R e { e j ( ω 0 t + ϕ ) } (1.7) A\cos(\omega_0t+\phi) = \frac{A}{2}e^{j\phi}e^{j\omega_0t} + \frac{A}{2}e^{-j\phi}e^{-j\omega_0t}=ARe\{e^{j(\omega_0t+\phi)}\}\tag{1.7} Acos(ω0t+ϕ)=2Aejϕejω0t+2Aejϕejω0t=ARe{ej(ω0t+ϕ)}(1.7)

A sin ⁡ ( ω 0 t + ϕ ) = A I m { e j ( ω 0 t + ϕ ) } (1.8) A\sin(\omega_0t+\phi)=AIm\{e^{j(\omega_0t+\phi)}\}\tag{1.8} Asin(ω0t+ϕ)=AIm{ej(ω0t+ϕ)}(1.8)

1.3 一般复指数信号

C C C a a a分别表示为 C = ∣ C ∣ e j θ C = \mid C \mid e^{j\theta} C=∣Cejθ a = r + j ω 0 a = r + j\omega_0 a=r+jω0,则有

x ( t ) = C e a t = ∣ C ∣ e j θ e ( r + j ω 0 ) t = ∣ C ∣ e r t e j ( ω 0 t + θ ) = ∣ C ∣ e r t cos ⁡ ( ω 0 t + θ ) + ∣ C ∣ e r t sin ⁡ ( ω 0 t + θ ) (1.9) x(t) = Ce^{at} = \mid C \mid e^{j\theta}e^{(r+j\omega_0)t} = \mid C \mid e^{rt}e^{j(\omega_0t+\theta)} = \mid C \mid e^{rt}\cos(\omega_0t + \theta) + \mid C \mid e^{rt}\sin(\omega_0t + \theta) \tag{1.9} x(t)=Ceat=∣Cejθe(r+jω0)t=∣Certej(ω0t+θ)=∣Certcos(ω0t+θ)+Certsin(ω0t+θ)(1.9)

由此可见, ∣ C ∣ e r t \mid C \mid e^{rt} Cert是该复指数信号的振幅,起着震荡变化的包络作用。

2. 离散时间复指数信号与正弦信号

离散时间复指数信号(序列)定义为

x [ n ] = C α n o r x [ n ] = C e β n (2.1) x[n] = C\alpha^n\quad or \quad x[n] = Ce^{\beta n}\tag{2.1} x[n]=Cαnorx[n]=Ceβn(2.1)

2.1 实指数信号

此时 C C C α \alpha α均为实数,具体性质略。

2.2 复指数信号与正弦信号

β \beta β为纯虚数,即 ∣ α ∣ = 1 \mid \alpha \mid=1 α∣=1,即可得到复指数序列,可改写为

x [ n ] = e j ω 0 n (2.2) x[n] = e^{j\omega_0n}\tag{2.2} x[n]=ejω0n(2.2)

与之对应的正弦信号 x [ n ] = A cos ⁡ ( ω 0 n + ϕ ) x[n] = A\cos(\omega_0n+\phi) x[n]=Acos(ω0n+ϕ)同样满足

e j ω 0 n = cos ⁡ ( ω 0 n ) + j sin ⁡ ( ω 0 n ) (2.3) e^{j\omega_0n}=\cos(\omega_0n)+j\sin(\omega_0n)\tag{2.3} ejω0n=cos(ω0n)+jsin(ω0n)(2.3)

A cos ⁡ ( ω 0 n + ϕ ) = A 2 e j ϕ e j ω 0 n + A 2 e − j ϕ e − j ω 0 n (2.4) A\cos(\omega_0n+\phi) = \frac{A}{2}e^{j\phi}e^{j\omega_0n}+\frac{A}{2}e^{-j\phi}e^{-j\omega_0n}\tag{2.4} Acos(ω0n+ϕ)=2Aejϕejω0n+2Aejϕejω0n(2.4)

2.2.1 与连续时间复指数信号的区别

离散复指数信号与连续复指数信号存在一些区别。

区别1:高频与低频

对于离散复指数信号,有

e j ( ω 0 + 2 k π ) n = e j ω 0 n , k = 0 , ± 1 , ± 2 , . . . (2.5) e^{j(\omega_0+2k\pi)n} = e^{j\omega_0n},\quad k=0,\pm1,\pm2,...\tag{2.5} ej(ω0+2)n=ejω0n,k=0,±1,±2,...(2.5)

这说明离散复指数信号在频率 ω 0 \omega_0 ω0和频率 ω 0 + 2 k π \omega_0+2k\pi ω0+2时是完全一样的。此外,信号的振荡速率在 ω 0 ∈ [ 0 , π ] \omega_0\in[0,\pi] ω0[0,π]时递增,在 ω 0 ∈ [ π , 2 π ] \omega_0\in[\pi,2\pi] ω0[π,2π]中递减。因此,离散时间复指数信号的低频部分位于 π \pi π的偶数倍频率附近,高频部分则位于 π \pi π的奇数倍频率附近。

而对于连续复指数信号来说,不同的 ω 0 \omega_0 ω0则对应完全不同的信号,且信号振荡速率随着 ω 0 \omega_0 ω0的增加而持续递增。

区别2:周期性

若使离散复指数信号为周期信号,则需满足

e j ω 0 ( n + N ) = e j ω 0 n (2.6) e^{j\omega_0(n+N)} = e^{j\omega_0n}\tag{2.6} ejω0(n+N)=ejω0n(2.6)

ω 0 = 2 π k N , k = 0 , ± 1 , ± 2 , . . . (2.7) \omega_0=2\pi\frac{k}{N},\quad k = 0, \pm1, \pm2, ...\tag{2.7} ω0=2πNk,k=0,±1,±2,...(2.7)

仅当 ω 0 \omega_0 ω0满足条件时,离散复指数信号才是周期的。而连续复指数信号对于任意 ω 0 \omega_0 ω0都是周期的。

2.2.2 谐波信号

成谐波关系的一组周期离散时间复指数信号的频率都是 2 π / N 2\pi/N 2π/N的整数倍,即

ϕ k [ n ] = e j k ( 2 π / N ) n , k = 0 , ± 1 , . . . (2.8) \phi_k[n] = e^{jk(2\pi/N)n},\quad k = 0, \pm1, ... \tag{2.8} ϕk[n]=ejk(2π/N)n,k=0,±1,...(2.8)

连续时间时,成谐波关系的信号都是不相同的,而离散时间时,有

ϕ k + N [ n ] = e j ( k + N ) ( 2 π / N ) n = e j k ( 2 π / N ) n e j 2 π n = ϕ k [ n ] (2.9) \phi_{k+N}[n]=e^{j(k+N)(2\pi/N)n} = e^{jk(2\pi/N)n}e^{j2\pi n} = \phi_k[n] \tag{2.9} ϕk+N[n]=ej(k+N)(2π/N)n=ejk(2π/N)nej2πn=ϕk[n](2.9)

因此,仅有 N N N个互不相同的周期复指数信号。

2.3 一般复指数信号

C C C α \alpha α均用极坐标形式给出,则有
C α n = ∣ C ∣ ∣ α ∣ n cos ⁡ ( ω 0 n + θ ) + j ∣ C ∣ ∣ α ∣ n sin ⁡ ( ω 0 n + θ ) (2.10) C\alpha^n = |C||\alpha|^n\cos(\omega_0n+\theta)+j|C||\alpha|^n\sin(\omega_0n+\theta)\tag{2.10} Cαn=C∣∣αncos(ω0n+θ)+jC∣∣αnsin(ω0n+θ)(2.10)

  • 0
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值