今天利用TensorFlow实现一个简单的回归算法。
1、首先导入库
import matplotlib.pyplot as plt
import tensorflow as tf
import numpy as np
2、创建数据集
这里使用numpy库生成输入数据 X, 输出数据 Y,并且在生成 Y 时加入了噪声。
# 初始化随机种子
tf.set_random_seed(123)
np.random.seed(123)
# 创建输入数据 X 。
x = np.linspace(-2, 2, 100) # 形状 (100, )
# 加噪声
noise = np.random.normal(0, 0.2, 100)
# 创建输出数据 Y
y = np.power(x, 2) + noise # 形状 (100,)
x, y = np.reshape(x, newshape=(-1, 1)), np.reshape(y, newshape=(-1, 1)) # 使数据变为(100,1)的形状
print(x.shape, y.shape)
3、创建神经网络,
这里使用了一个隐层,隐层具有10个神经元。输出层为一个神经元。
# 简单的神经网络, 完成线性回归。
# 1、定义输入与输出变量的占位符
tf_x = tf.placeholder(dtype=tf.float32, shape=x.shape)
tf_y = tf.placeholder(dtype=tf.float32, shape=y.shape)
# 定义神经网络
net1 = tf.layers.dense(tf_x, 10, activation=tf.nn.relu)
output = tf.layers.dense(net1, 1)
4、定义损失函数
对于回归问题一般使用均方误差,而对于分类问题一般使用交叉熵。这里使用 均方误差,并利用梯度下降优化器完成优化。
# 定义损失,回归问题一般使用 均方根误差。RMSE
loss = tf.losses.mean_squared_error(tf_y, output)
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.3)
train_op = optimizer.minimize(loss)
5、执行会话
这里使用里 plt.ion() 和 plt.ioff() 。实现动态的显示拟合数据与原数据的变化。
plt.ion() # 交互式显示图像
with tf.Session() as sess:
init_op = tf.global_variables_initializer()
sess.run(init_op)
# 训练次数 step
step = 1000
for i in range(step):
# 训练
_, loss_ow, y_pred = sess.run([train_op, loss, output],
feed_dict={tf_x: x, tf_y: y})
if i % 10 == 0:
print('loss_ow=', sess.run(loss, feed_dict={tf_x: x, tf_y: y}))
# 画图
plt.cla()
plt.scatter(x, y)
plt.plot(x, y_pred, 'r-', lw=2)
plt.text(0.5, 0, loss_ow, fontdict={'size': 20, 'color': 'red'}) # 设置图像上的文本。
plt.pause(0.1)
plt.ioff()
plt.show()
结果: