机器学习6:使用 TensorFlow 的训练线性回归模型

本文介绍了如何在 TensorFlow 中实现线性回归模型,从环境准备(包括安装 Python、PyCharm、TensorFlow、pandas 和 matplotlib)到编程实现,再到参数调优(epochs、learning_rate 和 batch_size)的过程。通过实例展示了如何通过调整超参数优化模型性能,强调了超参数选择对模型收敛的重要性。
摘要由CSDN通过智能技术生成

纸上得来终觉浅,绝知此事要躬行。前面 5 篇文章介绍了机器学习相关的部分基础知识,在本章,笔者将讲解基于 TensorFlow 实现一个简单的线性回归模型,以便增强读者对机器学习的体感。

目录

1.环境准备

1.1 安装 Python3

1.2 安装 PyCharm

1.3 安装 TensorFlow

1.4 安装 pandas

1.5 安装 matplotlib

2.编程实现

2.1 导入依赖模块

2.2 定义构建和训练模型的函数

2.3 定义打印函数

2.4 定义数据集

2.5 指定超参数

3.参数调优

3.1 默认超参数下训练

 3.2 优化超参数-epochs

 3.3 优化超参数-learning_rate

3.4 优化超参数-batch_size

4.小结


1.环境准备

在进行机器学习编程练习之前,我们需要准备好环境。在本节,笔者以 MacOS 为例,简单介绍环境准备的相关事项,Windows 也差不多。

1.1 安装 Python3

Mac 操作系统自带 Python,通常是 Python2.7,在终端输入命令:python -V,即可查看 Python 的版本号。虽然 Mac 自带的 Python,但它并不满足机器学的需要,在终端输入命令:python,可以看到如下信息——很显然,我们需要安装 Python3。

$ python

WARNING: Python 2.7 is not recommended. 
This version is included in macOS for compatibility with legacy software. 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jin_Kwok

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值