最大比合并 MRC的介绍、证明及应用举例

目录

一、介绍

二、证明

三、应用举例


         最大比合并是我在阅读Joint Active and Passive Beamforming for Reconfigurable Intelligent Surface这篇文章时学习的知识。下面对最大比合并进行介绍。

一、介绍

        最大比合并(Maximal Ratio Combining,MRC)是分集合并技术中的最优选择,相对于选择合并等增益合并可以获得最好的性能,其性能提升是由阵列增益( 阵列增益即发射的信号的功率增益,是通过发送机和/或接收机的多个天线而实现功率增益的,一般在LTE中,增加一个天线会有3db的增益带来的更高的信噪比,进而带来更好的误码率特性。

    最大比合并的实现方式是通过给分集的N路不同信号乘上一个不同的系数 w_{i}, i=1,2, \ldots \ldots, N,而系数的确定与N路分支的衰落系数 h_{i}, i=1,2, \ldots \ldots, N有关。

        通常有如下关系:

\frac{w_{m}}{w_{n}}=\frac{h_{m}}{h_{n}}

        下面对最大比合并是最优合并方案给出证明。

二、证明

        如上所述,考虑一个加性高斯白噪声(Additive White Gaussian Noise,AWGN)信道,设发送符号功率为E_{S},噪声功率谱密度为N_{0},N条之路的衰落系数为 h_{i}, i=1,2, \ldots \ldots, N,合并加权系数为w_{i}, i=1,2, \ldots \ldots, N,则接收端的和信噪比为:

S N R=\frac{\left(\sum_{n=1}^{N} w_{n} h_{b} \sqrt{E_{s}}\right)^{2}}{\sum_{n=1}^{N} w_{n}{ }^{2} N_{0}}=\frac{E_{s}}{N_{0}} \frac{\left(\sum_{n=1}^{N} w_{n} h_{b}\right)^{2}}{\sum_{n=1}^{N} w_{n}{ }^{2}}

        因为N_{0}E_{S}都为定值(常数),所以如果要让SNR最大,此时我们能控制的改变的参数为合并加权系数w_{i}, i=1,2, \ldots \ldots, N。所以通过SNR对w_{i}求一阶偏导: 

\frac{\partial S N R}{\partial w_{i}}=0, i=1,2, \cdots \cdots, N

        由于原贴中没有给出详细求解过程,此处我给出自己的详细计算过程方便大家理解:

(1)一阶分式求导(按求导公式来):

\frac{\partial S N R}{\partial w_{i}}=\frac{E_{s}}{N_{0}} \frac{2\left(\sum_{n=1}^{N} w_{n} h_{n}\right) h_{i}\left(\sum_{n=1}^{N} w_{n}^{2}\right)-2 w_{i}\left(\sum_{n=1}^{N} w_{n} h_{n}\right)^{2}}{\left(\sum_{n=1}^{N} w_{n}^{2}\right)^{2}}

(2)令偏导为0(也就是令分子为0):

2\left(\sum_{n=1}^{N} w_{n} h_{n}\right) h_{i}\left(\sum_{n=1}^{N} w_{n}^{2}\right)-2w_{i}\left(\sum_{n=1}^{N} w_{n} h_{n}\right)^{2}=0

(3)化简等式(除去相同项):

h_{i}\left(\sum_{n=1}^{N} w_{n}^{2}\right)-w_{i}\left(\sum_{n=1}^{N} w_{n} h_{n}\right)=0

       最终得出如下:

h_{i} \sum_{n=1}^{N} w_{n}^{2}={w}_{i} \sum_{n=1}^{N} h_{n} w_{n}

       那么我们取当i=1和i=2来观察这个式子,通过消去相同项可以得到:

h_{1} w_{2}=h_{2} w_{1}

       也就是下面这项式子成立:

\frac{w_{m}}{w_{n}}=\frac{h_{m}}{h_{n}}

       至此证毕。

三、应用举例

        那么这个方法在具体应用中该如何使用呢,下面用Joint Active and Passive Beamforming for Reconfigurable Intelligent Surface这篇文章作为例子:

(1)系统模型

        该文章考虑了一个 RIS 增强型共生无线电下行链路系统,它由一个具有 Q (Q ≥ 1) 个天线的 基站BS、K (K ≥ 1) 个单天线反向散射设备BD、一个具有 M 反射元件(M ≥ 1) 的 RIS 组成) 和单天线主接收器PR。 关于信道系数不再赘述。

        其中BD 的符号周期是主信号的 N 倍,其中 N 是整数,远大于 1(共生无线电的特点)。

        系统建模示意图如下:

(2)具体应用

        设BS发射的信号为s(n),BD发射的信号为c。对于给定的 c,PR 通过利用反向散射链路信号作为有用的多路径来解码主信号 s(n),具有如下解码信噪比 (SNR):

\gamma_{l}=\frac{\left|\left(\mathbf{h}^{H}+\mathbf{v}^{H} \boldsymbol{\Phi} \mathbf{U}+\sum_{k=1}^{K} \sqrt{\alpha_{k}} c_{k} b_{k}\left(\mathbf{f}_{k}^{H}+\mathbf{g}_{k}^{H} \boldsymbol{\Phi U}\right)\right) \mathbf{w}\right|^{2}}{\sigma^{2}}

        假设 PR 通过连续干扰消除 (SIC) 对 BD 的符号 c 进行解码,即在解码 c 之前从 y(n) 中减去 s(n)。由于假设了完美的 SIC,因此干扰仅来自其他 BD 的反向散射信号。由于 BD 的符号周期比主信号的符号周期长得多,因此使用最大比合并来解码 BD 的符号。因此,解码 ck 的 SINR 为:

\gamma_{k}=\mathbb{E}_{s(n)}\left[\frac{N \alpha_{k}|s(n)|^{2}\left|b_{k}\left(\mathbf{f}_{k}^{H}+\mathbf{g}_{k}^{H} \boldsymbol{\Phi} \mathbf{U}\right) \mathbf{w}\right|^{2}}{|s(n)|^{2} \sum_{i \neq k}^{K} \alpha_{i}\left|b_{i}\left(\mathbf{f}_{i}^{H}+\mathbf{g}_{i}^{H} \boldsymbol{\Phi} \mathbf{U}\right) \mathbf{w}\right|^{2}+\sigma^{2}}\right]

原帖链接:无线通信中的最大比合并(MRC)分析_妙木山大汉的技术博客_51CTO博客

本文阅读文献链接  提取码:e9ev

       看到这儿了,给个赞再走吧!!!

### MRC最大合并算法在Matlab中的实现 MRC是一种常用的信号处理技术,在多输入多输出(MIMO)系统中用于提高信噪比(SNR),从而降低误码率(BER)[^1]。下面是一个简单的例子,展示如何利用Matlab实现MRC。 #### 基本原理 假设存在两个天线接收到同一发送端的信息副本,则可以表示为: \[ y_1 = h_1 \cdot s + n_1 \] \[ y_2 = h_2 \cdot s + n_2 \] 其中\(y_i\)代表第i个接收机处的接收信号;\(h_i\)是对应的信道增益;s是要传送的数据符号;而\(n_i\)则指加性高斯白噪声(AGWN)。对于MRC而言,目标就是找到一种方式组合这两个独立观测值以获得更好的估计效果。 #### Matlab代码示例 ```matlab % 参数设置 Nt = 2; % 发射天线数量 Nr = 2; % 接收天线数量 SNR_dB = 0:2:20; BER_mrc = zeros(length(SNR_dB),1); for i=1:length(SNR_dB) snr_linear = 10^(SNR_dB(i)/10); % 初始化变量 error_count = 0; total_bits = 1e5; for k=1:total_bits/2 % 数据生成 bits = randi([0,1], Nt, 1); % BPSK调制 symbols = 2*bits - 1; % Rayleigh fading channel generation H = (randn(Nr,Nt)+1j*randn(Nr,Nt))/sqrt(2); % AWGN noise addition noise_power = sqrt(0.5*(1./snr_linear)); noises = noise_power * (randn(Nr,1)+1j*randn(Nr,1)); % Received signals at each antenna received_signals = H*symbols + noises; % MRC combining weights calculation w = conj(H)./sum(abs(H).^2); % Combined signal after MRC processing combined_signal = sum(w.*received_signals); % Decision making based on the sign of real part detected_bit = double(real(combined_signal)>0); % Error counting if ~isequal(detected_bit,bits') error_count = error_count + 1; end end BER_mrc(i)=error_count/(total_bits/Nt); end semilogy(SNR_dB,BER_mrc,'-*'); xlabel('SNR(dB)'); ylabel('Bit Error Rate '); title('Performance Comparison Between Different Combining Techniques'); legend({'MRC'}); grid on; ``` 此段脚本模拟了一个具有两根发射和接收天线的理想化场景下的二进制相移键控(BPSK)传输过程,并通过绘制不同信噪比条件下的比特错误概率曲线来评估所采用的最大比率合并方案的效果。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值