以下内容是我在阅读Reconfigurable Intelligent Surface Enhanced Multi-User MISO Symbiotic Radio System这篇文章时用到的参考文献中使用的优化技巧(Fractional Programming for Communication Systems—Part II: Uplink Scheduling via Matching)。
本文涉及到有两类方法,一类是二次变换,一类是拉格朗日对偶变换。二次变换是第一部分中用于处理连续问题的核心FP技术。当涉及用户调度的离散问题时,该FP技术称为拉格朗日对偶变换。
原文链接 提取码:kfvi
一、二次变换
二次变换(quadratic transformation)。因为我也才入门,我的理解就是将同时含有优化量的分式(分子分母都含有优化量),化为加减的形式。
定理 1(二次变换)给定一个非空约束集 ,一个非负函数 A(x):,和一个正函数 B(x):,其中 ,一个(单比率)分式规划问题是:
该问题等价于:
推论 1(比率和问题) 给定 M 对非负函数 Am(x) : 和正函数Am(x) : 对于 m = 1, . . . ,M, 比率之和问题为:
该问题等价于:
定理 2(多维和复数分式规划) 给定函数 α(x): , 函数 B(x): 和约束集 ,其中,一个多维复杂的 FP 问题 :
该问题等价于:
具体证明请参考原文。
二、拉格朗日对偶变换
通信系统设计的优化问题通常涉及以信干噪比(Signal to Interference plus Noise Ratio,SINR)的对数函数表示的数据速率,即log(1+SINR)。当涉及log(1+SINR) 的离散问题时,拉格朗日对偶变换变得必不可少。
简单来说该技术能实现将SINR移动到对数外的任务。它能让后续的二次变换以线性项表示所有优化变量。设目标问题为加权对数和最大化,这个问题在研究加权和速率(weighted sum-rate,WSR)时会遇到:
其中 是非负权重, 是非负函数,是所有m的正函数,是非空约束集。比率 可以在物理上解释为 SINR 项。问题 (7)此前没有提出过凸重构。此外,变量 x 可以是离散的或混合离散连续的。
定理 3(拉格朗日对偶变换)
其中被引入作为对每个比率项引入的辅助变量;
新的目标函数 fr 定义为:
这两个问题是等价的,即x是(7)的解当且仅当x是(8)的解,这两个问题的最优目标值也是相等的。证明过程很简单,可以自行阅读原文。