凸优化之通信系统的分式规划

本文介绍了在Reconfigurable Intelligent Surface Enhanced Multi-User MISOSymbiotic Radio System中,如何利用二次变换和拉格朗日对偶变换优化离散用户调度问题,特别是针对信号干扰和噪声比(SINR)的处理,以及如何将复杂的FP问题转化为更易解决的形式。
摘要由CSDN通过智能技术生成

        以下内容是我在阅读Reconfigurable Intelligent Surface Enhanced Multi-User MISO Symbiotic Radio System这篇文章时用到的参考文献中使用的优化技巧(Fractional Programming for Communication Systems—Part II: Uplink Scheduling via Matching

        本文涉及到有两类方法,一类是二次变换,一类是拉格朗日对偶变换。二次变换是第一部分中用于处理连续问题的核心FP技术。当涉及用户调度的离散问题时,该FP技术称为拉格朗日对偶变换。

        原文链接  提取码:kfvi

一、二次变换

        二次变换(quadratic transformation)。因为我也才入门,我的理解就是将同时含有优化量的分式(分子分母都含有优化量),化为加减的形式。

        定理 1(二次变换)给定一个非空约束集 \mathcal{X} \subseteq \mathbb{R}^{d},一个非负函数 A(x):\mathbb{R}^{d} \rightarrow \mathbb{R}_{+},和一个正函数 B(x)\mathbb{R}^{d} \rightarrow \mathbb{R}_{++},其中 d \in \mathbb{N},一个(单比率)分式规划问题是:

        该问题等价于:

        推论 1(比率和问题) 给定 M 对非负函数 Am(x) : \mathbb{R}^{d} \rightarrow \mathbb{R}_{+} 和正函数Am(x) : \mathbb{R}^{d} \rightarrow \mathbb{R}_{++} 对于 m = 1, . . . ,M, 比率之和问题为:

         该问题等价于:

        定理 2(多维和复数分式规划) 给定函数 α(x): \mathbb{C}^{d_{1}} \rightarrow \mathbb{C}^{d_{2}}, 函数 B(x): \mathbb{C}^{d_{1}} \rightarrow \mathbb{S}_{++}^{d_{2} \times d_{2}} 和约束集 \mathcal{X} \subseteq \mathbb{C}^{d_{1}} ,其中d_{1}, d_{2} \in \mathbb{N},一个多维复杂的 FP 问题 :

        该问题等价于:

       具体证明请参考原文。

 二、拉格朗日对偶变换

        通信系统设计的优化问题通常涉及以信干噪比(Signal to Interference plus Noise Ratio,SINR)的对数函数表示的数据速率,即log(1+SINR)。当涉及log(1+SINR) 的离散问题时,拉格朗日对偶变换变得必不可少。

        简单来说该技术能实现将SINR移动到对数外的任务。它能让后续的二次变换以线性项表示所有优化变量。设目标问题为加权对数和最大化,这个问题在研究加权和速率(weighted sum-rate,WSR)时会遇到:

        其中 w_{m}是非负权重,A_{m}(\mathbf{x}) 是非负函数,B_{m}是所有m的正函数,\mathcal{X}非空约束集。比率 A_{m} / B_{m}可以在物理上解释为 SINR 项。问题 (7)此前没有提出过凸重构。此外,变量 x 可以是离散的或混合离散连续的。

        定理 3(拉格朗日对偶变换

         其中\gamma_{m}被引入作为对每个比率项A_{m}(\mathbf{x}) / B_{m}(\mathbf{x})引入的辅助变量

        新的目标函数 fr 定义为:

        这两个问题是等价的,即x是(7)的解当且仅当x是(8)的解,这两个问题的最优目标值也是相等的。证明过程很简单,可以自行阅读原文。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值