一直挺喜欢Adobe的产品,因为Adobe的产品敢于面对复杂,勇于解决一些极致的问题:例如PhotoShop解决极致的画笔问题,Premier解决复杂无比的视频编辑问题。
Adobe Audience Manager(AAM)是Adobe的DMP产品,解决Audience管理的问题。东野圭吾曾说过”比侦探小说情节更加复杂的就是人心”,看看Adobe的AAM如何管理复杂的人。
AAM相比其它公司产品DMP,功能更加强大和复杂。本文介绍其产品设计的一些概念和逻辑,看看AAM如何抽象和分解问题,并且将这些解决方案设计成产品,规模化解决客户的受众管理核心问题。问题如下:
1. 标签和人群概念
2.设备打通的设计
3.人群的算法模型
4.产品的架构设计
5 产品的发展阶段
第一部分, 人:信号(Signal) ,特征(Trait),人群(Segment)
AAM就是管理一些五花八门,林林总总的各种标识(设备号,Cookie号,会员号等等)的各种属性,这些数据的来源也是各式各样的。如何统一这些管理呢? AAM引入了三个概念信号(Signal),特征(Trait),和人群(Segment)。
a) Signal : 信息的最小单位,事件或数据中某个字段,例如流量参数中带有 "Product=camera"
b)Trait : Signal的表达式组合,Trait支持层级管理,还支持由算法自动生成的特征,支持有效时间(TTL)
c) Segment: Trait的表达式组合
Segment与Trait :
Segment和Trait是最容易造成混淆的,AAM提供了一个Trait和Segment进行比较的工具,支持查看相互的覆盖率。
Segment大小的实时预估:
其中包括非常多的细节设计,详见下面表格。
类型 | 解释 |
Estimated Real-Time Population (Potential) |
(预估) 曾经满足过Segment中Trait条件(不限时间),最近30天出现过的人 |
Estimated Total Population (Potential) |
预估总人数(只是预估值,并非实际发生值) |
Real-Time Population (Existing) |
(实际值)曾经满足过Segment中Trait条件(不限时间),最近30天出现过的人 |
Total Population (Existing) |
(实际值)昨天满足Segment的人数 |
第二部分 Profile Merge /Device Graph
画像合并/设备打通是很多业务场景需要的,技术上的复杂度也比较高,隐私管理也很复杂。例如,以下问题都是设计难点。
设备打通/关联包括确定性关联和概论性关联,如何协调二者。
设备打通/关联后可能是一个人,也可能是一个家庭
设备打通的数据隐私也存在诸多考虑,如何处理用户信息和匿名信息的关联
总之,打通很美好,技术很复杂,应用在摸索。
对于这么复杂的问题,AAM如何支持这个问题呢?
答案就是是一切从简:事不过三!
支