机器学习 · 总览篇 VII 三要素之策略-正则化

上一篇文章和本文主要介绍三要素的第二要素-策略:上一篇文章中已经介绍了策略中平衡经验风险和结构风险的正则化系数,衡量经验风险的代价函数和损失函数;本文继续介绍最后一个重要的内容,衡量结构风险的正则化项。

文章首发于我的博客,转载请保留链接 😉

在上一篇文章中提到过,策略部分就是评判“最优模型”(最优参数的模型)的准则和方法,图1是目标函数的函数形式,

图1 机器学习模型的目标函数形式

如图1所示,目标函数包含了表征经验风险的代价函数和表征结构风险的正则化项,上篇文章已经介绍了正则化系数和损失函数:正则化系数是设置代价函数和正则化项约束权重的常量,代价函数是样本集的损失函数之和。下文将主要介绍正则化,正则化是对 y=wx+b 中参数 w(b也可以,但没必要)的约束

一、正则化

介绍正则化,首先回答下面三个问题:

1) 机器学习中正则化是什么?

正则化即Regularization,是对 y=wx+b(分类任务中的判别函数,回归问题中的拟合函数)中参数 w 的约束,在目标函数中体现就是关于 w 的函数项,通常按照惯例是不管b的,但如果在实际应用时将b也加上的话,其实影响也不大,预测效果基本没差别。wiki中给出了对正则化的很好的解释:

  1. 理论依据是试图将奥卡姆剃刀原则加入到求解过程
  2. 从性质上看,正则化是对模型的复杂性施加惩罚
  3. 从贝叶斯的观点来看,不同的正则化实现对应着对模型参数施加不同的先验分布
  4. 从作用上看,可以将规则化作为一种技术来提高学习模型的泛化能力,即提高模型对新数据的预测能力

后文将会对以上2-4点会进行详细的解释。

2)参数越稀疏代表模型越简单、越能防止过拟合吗?

是的。因为特征中真正重要的维度可能并不多,反映到模型中就是真正重要的模型参数可能并不多,保留尽可能少的重要的参数可以减弱非重要特征的波动带来的模型预测影响,防止过拟合,使模型的泛化效果更好。另一个好处是参数变少可以使整个模型获得更好的可解释性,而且还可以用做特征选择

3)参数值越小代表模型越简单、越能防止过拟合吗?

是的。因为越复杂的模型,越是会尝试对所有的样本进行拟合,这就容易造成在较小的区间里预测值产生较大的波动,对于一些异常样本点波动就更大,这种较大的波动也反映了在这个区间里的导数很大,而只有较大的参数值才能产生较大的导数,因此复杂的模型,其参数值会比较大。相反地,参数小,则导数小,则对于样本特征的波动具有鲁棒性,那么模型能更好地防止过拟合,泛化效果会更好

我们可带着以上3个问题的答案,来分析常见范数对参数的约束,内容包括L0、L1、L2的介绍以及它们对模型复杂度、拟合程度、特征向量稀疏性等方面的影响。

1.1 L0范数
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值