LLaMA Factory 微调框架的部署

系列文章目录

第一章 Xinference 分布式推理框架的部署
第二章 LLaMA Factory 微调框架的部署
第三章 LLaMA Factory 微调框架数据预处理加载



前言

在深度学习的浪潮中,预训练大语言模型(Large Language Models, LLMs)逐渐成为各领域的核心工具。然而,由于大规模模型的复杂性和计算资源需求,直接使用这些模型来解决特定任务往往效率低下。微调(Fine-tuning)技术因此成为了模型开发者们的关键手段,通过针对特定任务的数据调整模型的权重,可以大幅提升模型的效果

LLaMA(Large Language Model Meta AI)作为近年来大受欢迎的开源大语言模型,因其性能优异和架构灵活被广泛应用。而为了更高效地利用 LLaMA 及其衍生模型,许多开发者希望能够快速构建一套易用的微调框架,以支持特定场景的模型训练、验证与部署。本文将介绍如何部署 LLaMA Factory 微调框架。


一、LLaMA Factory是什么?

LLaMA Factory 是一款专注于 LLaMA 模型及其衍生版本的轻量级微调框架,旨在帮助开发者快速实现从模型加载到特定任务微调的全流程管理。它结合了主流的大语言模型微调技术,支持高效的参数优化和灵活的任务定制。无论是小规模的实验性项目,还是面向生产环境的大规模模型部署,LLaMA Factory 都能以简单、高效的方式满足不同场景的需求,为开发者释放了 LLaMA 模型的更多潜力。

通过使用 LLaMA Factory,可以轻松完成以下目标:

  • 快速上手:一键加载 LLaMA 模型,结合简单的配置快速完成微调流程。
  • 资源节约:支持轻量化微调技术,使消费级硬件也能运行大模型任务。
  • 任务灵活:支持多种自然语言处理任务的微调,满足不同场景的实际需求。

二、LLaMA Factory 部署

1.环境说明

此处需要在anaconda中创建虚拟环境,python版本推荐3.11,anaconda的安装和使用参考往期文章:第一章 Xinference 分布式推理框架的部署。注意:除了LLaMA Factory源码的下载,下列命令均在虚拟环境中执行。

1.1 硬件要求

在这里插入图片描述

1.2 环境版本推荐

在这里插入图片描述

2.部署

2.1 下载git源码

git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git

2.2 安装

cd LLaMA-Factory
pip install -e ".[torch,metrics]"

可选的额外依赖项:torch、torch-npu、metrics、deepspeed、liger-kernel、bitsandbytes、hqq、eetq、gptq、awq、aqlm、vllm、galore、badam、adam-mini、qwen、modelscope、openmind、swanlab、quality。

如果要在 Windows 平台上开启量化 LoRA(QLoRA),需要安装预编译的 bitsandbytes 库, 支持 CUDA 11.1 到 12.2。

pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.41.2.post2-py3-none-win_amd64.whl

2.3 启动

-- 进入到下载的源码目录,否则自定义数据集和默认数据集无法直接加载进入LLama Factory
cd /d D:\LLaMA-Factory

-- 设置缓存目录,set TRANSFORMERS_CACHE只是为了启动页面去除警告信息
set TRANSFORMERS_CACHE=
set HF_HOME=D:\anaconda3\envs\llama-factory\cache

-- 启动成功后,会自动跳转到浏览器页面
llamafactory-cli webui

跳转成功后,页面如下:
在这里插入图片描述

总结

本文仅仅介绍了如何部署 LLaMA Factory 微调框架,下期将会介绍如何使用LLaMA Factory实现数据预处理、微调训练Xinference的本地模型,并最终部署的全流程管理。

### 关于LlaMA-Factory部署微调的信息 #### 使用LlaMA-Factory进行模型微调 为了利用LlaMA-Factory执行低秩适应(LoRA)微调,需先安装该库。这可以通过克隆GitHub上的官方仓库来完成[^2]: ```bash git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git ``` 接着,在本地环境中设置必要的依赖项并加载预训练的基础模型。对于具体的微调过程,LlaMA-Factory提供了详细的指南说明如何准备数据集以及调整超参数以优化特定任务的表现。 #### Python在LlaMA-Factory中的应用 Python作为一门高级编程语言,在此框架内扮演着重要角色。它不仅被用来实现核心算法逻辑,还支持整个工作流——从数据处理到最终的服务化部署。开发者可以借助丰富的第三方库简化开发流程,提高效率[^3]。 #### 部署经过微调后的模型 当完成了对基础模型的有效改进之后,下一步就是将其成功地集成至生产环境当中。LlaMA-Factory同样涵盖了这部分内容的教学材料,指导用户怎样打包自己的成果,并通过RESTful API等形式对外提供服务接口访问能力。 #### 调用API实例 一旦模型已经准备好上线运行,则可通过如下方式创建简单的客户端请求脚本来测试其性能表现: ```python import requests url = "http://localhost:8000/predict" data = {"input": "your input text here"} response = requests.post(url, json=data) print(response.json()) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值