LLaMA-Factory安装部署-1

dockerfile运行

FROM pytorch/pytorch:2.1.2-cuda12.1-cudnn8-devel

COPY ./serving /usr/local/serving/serving
COPY ./models /usr/local/serving/models
WORKDIR /usr/local/serving/serving

RUN pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple/ \
    &&  pip install --no-cache-dir typer==0.12.3 \
    &&  pip install -e ".[torch,metrics]"

CMD python ./src/webui.py

对齐训练,大模型对齐训练ppo、dpo、kto,到底是什么意思,是什么的缩写,原理是怎么样的?

大模型对齐训练中的PPO、DPO、KTO是几种不同的优化算法,它们各自有不同的缩写含义和原理。

  1. PPO:即Proximal Policy Optimization(近端策略优化),是一种强化学习算法。PPO通过结合有监督微调(Supervised Fine-Tuning,SFT)和强化学习策略训练阶段,使用显式的逐点奖励函数来训练模型。PPO有助于对齐大型语言模型(LLM)与人类偏好,但也可能导致模型在某些NLP基准上的性能下降,这个现象被称为“对齐税”。

  2. DPO:即Direct Preference Optimization(直接偏好优化),是另一种对齐大型语言模型的方法。DPO通过数学推理得到奖励函数与最优策略之间的直接映射,消除了奖励模型的训练过程,直接在偏好数据上优化策略模型。这简化了训练流程,提高了算法的稳健性,并且避免了PPO中的“对齐税”。

  3. KTO:即Kahneman-Tversky Optimization(卡尼曼-特沃斯基优化),是一种基于二元反馈来对齐LLM的方法。KTO利用被标记为“好”或“坏”的单个例子来定义损失函数,而不需要成对的偏好数据,这使得它在实践中更容易获取数据,适用于持续更新生产环境中运行的模型。

这三种方法都是针对如何更好地训练和对齐大型语言模型,使它们的行为更符合人类的偏好和价值观。每种方法都有其优势和适用场景,选择合适的方法需要根据具体的应用需求和数据条件来决定。

好的,让我用一个更通俗的比喻来解释PPO、DPO和KTO这三种大模型对齐训练方法。

想象一下,你是一位老师,你的任务是教一个名叫“大模型”的学生如何更好地回答问题。这个学生已经学了很多知识,但是它回答问题的方式可能不是那么完美,所以需要一些指导来让它的回答更符合人们的期望。

  1. PPO(近端策略优化):这个方法就像是你在给学生“大模型”布置一系列的作业(训练任务),并且告诉它哪些答案好(奖励),哪些答案不好(惩罚)。然后,你让学生根据这些反馈来调整自己的学习策略。但是,这个过程可能会让学生在某些方面过于保守,不敢大胆创新,这就是所谓的“对齐税”,意味着它可能在一些基础能力上有所损失。

  2. DPO(直接偏好优化):这个方法更像是你直接告诉学生“大模型”,对于每个问题,人们更喜欢哪种类型的答案。然后你让学生根据这些直接的偏好来调整自己的回答,而不需要通过额外的奖励或惩罚来判断。这种方法更直接,不需要学生去猜测老师的意图,因此通常更有效,也避免了“对齐税”。

  3. KTO(卡尼曼-特沃斯基优化):这个方法就像是你给学生“大模型”展示一些例子,告诉它哪些是好的答案,哪些是不好的答案,但是不需要它去比较不同答案的优劣。学生只需要学会识别并倾向于选择那些被标记为“好”的答案。这种方法很简单,因为它不需要学生去理解复杂的比较,只需要学会从简单的反馈中学习。

总的来说,这三种方法都是为了让“大模型”这个学生更好地理解和满足人们对于好答案的期望,但是它们在教学策略和复杂性上有所不同。PPO像是传统的教学方法,DPO和KTO则更像是现代的、更直接有效的教学方法。

PPO(Proximal Policy Optimization)、DPO(Direct Preference Optimization)和KTO(Kahneman-Tversky Optimization)是大模型对齐训练中的三种重要技术。PPO是一种强化学习算法,它通过限制策略更新的幅度来确保性能的稳定提升。DPO则直接在偏好数据集上进行优化,简化了传统强化学习中奖励建模的过程。而KTO是一种基于单一示例定义损失函数的方法,完全放弃了成对偏好数据的需求

为了更好地理解这些技术及其在大模型中的应用,下面将详细解释每种技术的工作原理和实际用途:

  1. PPO
    • 目标函数:PPO的目标函数包括期望回报项和熵正则化项,旨在最大化策略的期望回报并鼓励探索[2]。
    • 概率比率剪切:PPO使用概率比率剪切技术来限制新策略和旧策略之间对动作概率的比率,避免过大的策略变动[2]。
    • 优化过程:PPO通过随机梯度上升方法优化目标函数,重复利用同一批数据进行多次迭代,直到策略收敛[2]。
  2. DPO
    • 重新定义对齐问题:DPO将传统的对齐问题重新定义为一个简单的损失函数,可以直接在偏好数据集上进行优化[1][3]。
    • 解决过拟合问题:虽然DPO容易在偏好数据集上过拟合,但通过引入如身份偏好优化(IPO)这样的改进方法,可以在不使用提前停止等技巧的情况下让模型收敛[3]。
    • 应对复杂场景:DPO适用于难以明确定义奖励函数的任务,通过对比不同决策序列或策略来优化模型行为,使其更符合预期[2]。
  3. KTO
    • 基于单一示例的损失函数:KTO采用基于单一示例定义损失函数的方法,完全放弃成对偏好数据,简化了对齐过程[2]。
    • 适应实际应用场景:KTO特别适合于实际应用场景中,如聊天机器人的实时更新和细化,因为它不需要复杂的成对偏好数据[3]。
    • 降低标注成本:KTO通过使用简单的“好”或“坏”标签来训练模型,降低了标注成本且易于获取,适合不断更新生产环境中的模型[3]。

综上所述,这些技术各有优势:PPO适用于需要细致调控策略更新的场景;DPO适合难以明确定义奖励函数的任务;而KTO适用于标注成本高且需要简化训练流程的情况。在实际应用中,可以根据具体需求选择合适的方法。

好的,让我们用更通俗的方式来解释这些算法:
PPO (Proximal Policy Optimization)
想象一下你在玩一个游戏,你的目标是获得尽可能高的分数。在这个游戏中,你有一个教练(奖励模型),他会告诉你哪些动作做得好,哪些做得不好。PPO就像是一个聪明的玩家,他会观察教练的反馈,并尝试找出最好的行动策略来获得高分。但是,他不会每次都做出巨大的改变,而是会小心翼翼地调整自己的行为,以确保每次都能比上次做得更好一点。
DPO (Direct Preference Optimization)
现在,假设你不再需要教练来告诉你哪些动作好,哪些不好。相反,你有一个朋友,他会直接告诉你他喜欢哪些动作,不喜欢哪些动作。DPO就像是一个善于观察的朋友,他会直接从你的喜好中学习,并尝试模仿你喜欢的动作。这种方法更简单,因为你不需要一个专门的教练来告诉你什么是对的,什么是错的。
KTO (Kahneman-Tversky Optimization)
最后,想象一下你正在做一个决定,你需要考虑你的感受和直觉。KTO就像是一个心理学家,他会帮助你理解你的感受是如何影响你的决策的。在这种情况下,KTO会帮助模型理解人类的偏好,就像理解一个人为什么会害怕失去某些东西一样。这样,模型就可以更好地预测和满足人类的需求。
总结来说,PPO、DPO和KTO都是帮助大型语言模型更好地理解人类喜好的方法。PPO像是一个跟随教练指导的玩家,DPO像是一个直接从朋友喜好中学习的朋友,而KTO则像是一个理解人类心理的心理学家。这些方法都有助于让模型更加安全和可靠,更好地服务于人类。

  • 12
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Llama-factory是一个由利马养殖而来的工厂。利马作为一种动物在许多地方被用于毛和肉制品的生产。利马的毛是非常珍贵和高质量的,可以用于制作织物、毛线和毛毯等。因此,利马养殖业成为了一个潜力巨大和有利可图的行业。 Llama-factory的主要目标是通过高效率和可持续的生产方式,生产出高质量的利马制品。工厂采用先进的技术和设备,提高生产效率和产品质量。同时,为了保护环境和动物福利,工厂也将注重科学农业和动物养殖实践。 工厂保证了从利马养殖到制品加工的全过程的可追溯性和质量控制。优质利马毛的选择、剪切和加工过程严格按照标准操作规程进行,确保最终产品的优质和安全。 Llama-factory还将致力于产品的创新和市场开拓。除了传统的利马制品,如毛线和毛毯,工厂还会开发出更多样化的产品,如利马织物和时尚配饰。通过与设计师和品牌的合作,工厂将推出独特且具有竞争力的产品,满足不同消费者的需求。 同时,Llama-factory也将关注社会责任和可持续发展。工厂将积极参与当地社区的福利和环保项目,为地方经济和环境的改善做出贡献。 总之,Llama-factory将在利马养殖和产品制造领域发挥重要作用。通过高质量的利马制品和可持续的生产方式,工厂将为消费者提供优质的产品,同时为当地社区和环境做出积极贡献。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值