文章目录
#前言
在学习信号与系统以及后面的数字信号处理时,各种变换的定义和关系一直很让人头疼。在复习过程中我简单整理了一下各种变换的定义和关系,希望能对大家理解信号在时域频域之间的变换有所帮助。因为能力有限,所以如果有错误,欢迎在留言指正!
关系图汇总
连续信号
周期信号的傅里叶级数 FS
周期函数可以展开成在完备正交信号空间中的无穷级数,所展开的无穷级数统称为傅里叶级数。设有周期函数 x ~ a ( t ) \widetilde{x}_a(t) x a(t),它的周期是T,角频率 Ω = 2 π F = 2 π T \Omega=2{\pi}F=\dfrac{2\pi}{T} Ω=2πF=T2π,它可分解为
三角函数形式
x ~ a ( t ) = a 0 2 + ∑ n = 1 ∞ a n c o s ( n Ω t ) + ∑ n = 1 ∞ b n s i n ( n Ω t ) = A 0 2 + ∑ n = 1 ∞ A n c o s ( n Ω t + φ n ) \widetilde{x}_a(t)=\dfrac{a_0}{2}+\sum\limits_{n=1}^{\infty}a_ncos(n{\Omega}t)+\sum\limits_{n=1}^{\infty}b_nsin(n{\Omega}t)=\dfrac{A_0}{2}+\sum\limits_{n=1}^{\infty}{A_n}cos(n{\Omega}t+\varphi_n) x
a(t)=2a0+n=1∑∞ancos(nΩt)+n=1∑∞bnsin(nΩt)=2A0+n=1∑∞Ancos(nΩt+φn)
傅里叶级数 a n = 2 T ∫ − T 2 T 2 x ~ a ( t ) c o s ( n Ω t ) d t , n = 0 , 1 , 2 , . . . a_n=\dfrac{2}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}\widetilde{x}_a(t)cos(n{\Omega}t)dt,{\qquad}n=0,1,2,... an=T2∫−2T2Tx
a(t)cos(nΩt)dt,n=0,1,2,...
b n = 2 T ∫ − T 2 T 2 x ~ a ( t ) s i n ( n Ω t ) d t , n = 1 , 2 , . . . b_n=\dfrac{2}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}\widetilde{x}_a(t)sin(n{\Omega}t)dt,{\qquad}n=1,2,... bn=T2∫−2T2Tx
a(t)sin(nΩt)dt,n=1,2,...
A n = a n 2 + b n 2 , φ n = − a r c t a n ( b n a n ) A_n=\sqrt{a_n^2+b_n^2},{\qquad}\varphi_n=-arctan(\dfrac{b_n}{a_n}) An