算法学习DAY04 动态规划

线性DP(相比之下,有一个模板框架)

最长上升子序列

最长上升子序列

动态规划O(n^2)的做法

#include<bits/stdc++.h>
using namespace std;
const int N = 1010;
const int INF = 1e9 + 10;

int n;
int a[N];
int f[N];//f[i]表示以i结尾的最长递增子序列

int main()
{
	cin >> n;
	for (int i = 1; i <= n; i++)
	{
		cin >> a[i];
	}

    for(int i=1;i<=n;i++)
    {
        f[i]=1;//这个容易漏掉
        for(int j=1;j<=i-1;j++)
        {
            if(a[j]<a[i])f[i]=max(f[i],f[j]+1);
        }
    }
    int res=-INF;
    for(int i=1;i<=n;i++)
    {
        res=max(res,f[i]);
    }
	cout << res;
	return 0;
}

最长公共子序列

//算法是学习的过程,不是创造的过程
#include<bits/stdc++.h>
using namespace std;
const int N = 1010;
const int INF = 1e9 + 10;

int n, m;
char a[N], b[N];
int f[N][N];

int main()
{
	cin >> n >> m;
	scanf("%s%s", a + 1, b + 1);//这样读入的话就是从1开始

	for(int i=1;i<=n;i++)
		for (int j = 1; j <= m; j++)
		{
			if (a[i] == b[j])
			{
				f[i][j] = f[i - 1][j - 1] + 1;
			}
			else
			{
				f[i][j] = max(f[i - 1][j], f[i][j - 1]);
			}
		}
	cout << f[n][m] << endl;
	return 0;
}

摘花生(网格类的题目)

 1015. 摘花生 - AcWing题库

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;
const int N = 110;
int t;
int r,c;
int hua[N][N];
int dp[N][N];
int main()
{
    cin>>t;
    while(t--)
    {
        cin>>r>>c;
        for(int i=1;i<=r;i++)
            for(int j=1;j<=c;j++)
                cin>>hua[i][j];
        
        for(int i=1;i<=r;i++)
            for(int j=1;j<=c;j++)
                dp[i][j]=max(hua[i][j]+dp[i-1][j],hua[i][j]+dp[i][j-1]);
        
        cout<<dp[r][c]<<endl;
    }
    
    return 0;
}

最长上升子序列和摘花生的结合题目

1212. 地宫取宝 - AcWing题库

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 55,MOD=1000000007;
int w[N][N];
int f[N][N][13][14];

int n,m,k,c;
int main()
{
    cin>>n>>m>>k;
    for(int i=1;i<=n;i++)
    for(int j=1;j<=m;j++)
    {
        cin>>w[i][j];
        w[i][j]++;
    }
    
    f[1][1][1][w[1][1]]=1;
    f[1][1][0][0]=1;
    
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=m;j++)
        {
            if(i==1&&j==1)continue;
            for(int u=0;u<=k;u++)
            {
                for(int v=0;v<=13;v++)
                {
                    int &val=f[i][j][u][v];
                    val=(val+f[i-1][j][u][v])%MOD;
                    val=(val+f[i][j-1][u][v])%MOD;
                    if(w[i][j]==v&&u>0)
                    {
                        for(int c=0;c<v;c++)
                        {
                            val=(val+f[i-1][j][u-1][c])%MOD;
                            val=(val+f[i][j-1][u-1][c])%MOD;
                        }
                    }
                    
                }
            }
        }
    }
    int res=0;
    for(int i=0;i<=13;i++)res=(res+f[n][m][k][i])%MOD;
    cout<<res<<endl;
    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值