图像处理算法 | 联合双边滤波(Joint Bilateral)

联合双边滤波(Joint or Cross Bilateral)这个算法是从论文《Joint Bilateral Upsample》(中文名:联合上采样双边)中看见的,论文在引用双边滤波器的时候介绍了它,虽然它也有“Joint”这个关键词,但是和“Joint Bilaterl Upsample”有本质的差别。

一、算法原理

    论文中把双边滤波的公式换了个样子,如下式(1)所示:

我来翻译一下这个公式的意思:f和g都是高斯函数,中心点是p,q在Ω的范围内,I是输入。“||....||”是范数,在这里就是求向量各分量的平方和再开根号,∑是把Ω范围内的结果累加,kp是算出来的权重和。再进一步解释一下这个公式到底想说啥,它想说:

  1. 我是图像中的一个像素,我有三个量,x方向坐标,y方向坐标,亮度I;
  2. 以当前我的位置p(x,y)为中心点,我划出了一个范围Ω,假设现在这个范围是5×5,那么围绕着我的有24个q,加上我自己,共25个,目前的运算要在Ω指定的范围内;
  3. 我要计算距离和亮度两个范数“||....||”,距离的做法是用p的坐标(x,y)减去q的坐标(x1,y1)的平方,得到25个距离结果,亮度的做法是用p的亮度减去q的亮度,得到25个亮度结果;
  4. 我选择的核是高斯函数,所以我给距离结果分配一个高斯函数f,再给亮度结果分配一个高斯函数g,其实f和g都是exp,计算exp获得距离权重和亮度权重,把这两个权重乘起来得到25个混合权重k;
  5. 用25个混合权重k和5×5范围内的亮度I对应相乘,然后把它们加起来记为sum,再把k也加起来记为kp,就是归一化系数;
  6. 当前中心点p的滤波结果Jp=sum/kp,把一整幅图像全都做上述操作输出,就是双边滤波的结果。

这就正经论文里面正经公式的意思,可能就是为了让正经人看不懂吧,也无力吐槽,不过看懂一个就能看懂很多个了。它就是在说,图像中的每个pixel都是以块为单位计算的,要经过两个高斯核获得滤波权重,所以图像中的核就是一个二维系统,图像中所有的pixel都要从里面过一遍,找到了合适的系统就能得到满意的效果。

然后紧接着论文中提到了joint (or cross) bilateral滤波器,给出了公式如(2)所示:

和公式(1)相比只有红框中圈出的部分做了改变,这代表着joint (or cross) bilateral改变的是值域滤波的内容,论文中明确指出要把高频图像和低频图像结合起来做联合滤波,而I浪(I上面的那个波浪真心打不出来,简称为“I浪”)作为导向图(guidance image)做值域滤波。

上面这短短的一段话并没有说明I是低频还是高频,但是公式中明确写了被滤波的还是Iq,那说明I是高频图像,I浪是低频图像,把I经过高斯滤波就能得到一幅低频I浪。思路有了,现在开始做测试。

二、图像处理效果 

输入图像为加了高斯滤波的Lena图,对输入图像做3x3的高斯滤波,得到的效果如下图1所示:

图1  输入图像(左)和高斯滤波(右)

用高斯滤波的结果做值域权重(guide)对输入图像做双边滤波的结果如图2右所示,为了对比效果,把双边滤波的结果(图2左)也跑出来一起显示:

图2  双边滤波(左)和联合双边滤波(右)

上传会压缩图像造成噪点变形,看不出真实情况,所以这里也建议需要学习相关知识的时候自己动手跑一下结果。实际情况是联合双边滤波效果更好,把上面两幅图像的放大分别看平坦部分(图3)和纹理部分(图4)的细节。

图3 平坦区域,左边是双边,右边是联合双边

左边是可以看见残留的噪点的,但是右边已经很平滑了,平坦区域来看,联合双边效果更优。

图4 纹理区域,左边是双边,右边是联合双边

纹理区域也是一样,左边双边的噪点降不干净,右边联合双边的效果要好很多。再来分析一下为什么联合双边的效果会好很多,还记得《双边滤波器》章节中的局部权重放大图吗?就是下面图5的这个:

图5 双边滤波局部权重放大图

图5中值域权重是含噪的,这就造成最终的融合权重也是有噪声的,所以双边滤波相当于是用含噪声的图像当guide去指导降噪,那效果差一点儿也是意料之中了。而联合双边用的是高斯滤波后的guide图像指导输入图像降噪,噪声的影响会减弱一些,现在把联合双边同样位置的局部权重放大看一下。

图6 联合双边滤波局部权重放大图

图6左边的I就是输入图像,右边的guide是I经过3×3高斯的结果,图中的(b)~(e)是根据guide计算出的权重,最终的混合权重作用在(a)上,和图5的值域权重相比,图6的值域权重要更干净一些,最终的混合权重几乎没什么噪点,纹理区域的边界也更清晰,所以联合双边滤波优于双边滤波。

分别使用3×3、5×5和7×7高斯滤波做联合双边guide的效果如图7所示:

图7 3 × 3高斯(左),5 × 5高斯(中),7 × 7高斯(右)

从图7来看,联合双边滤波的结果会越来越低频,但是边界保护的相对较好。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大凝的IC进阶之路

一起学习一起进步

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值